
Reproducible Scientific Computing

and Data Analysis

Nadia Marounina, Henry Lütcke

Scientific IT Services, ETH Zurich

October 30, 2024

Slides & Materials: https://siscourses.ethz.ch/reproducible_computing/

IT Services

https://siscourses.ethz.ch/reproducible_computing/

Managing your Source

Code

30 Oct 2024Scientific IT Services 2

Overview of today’s workshop

Reproducible Computing

Platforms

Setting the Scene
Managing Dependencies &

Computing Environments

Image credit: Open Science Training Handbook

Virtualizing Computing

Environments
Interactive Computational

Notebooks

https://open-science-training-handbook.gitbook.io/book/

30 Oct 2024Scientific IT Services 3

Setting the Scene

30 Oct 2024Scientific IT Services 4

Nature survey on reproducibility across all scientific domains

Nature 533, 452–454 (26 May 2016) doi:10.1038/533452a

Reproducibility & Replicability in Science

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

30 Oct 2024Scientific IT Services 5

The Reproducibility project

• Replicate 100 experiments published in

top psychology journals

• One-half to two-thirds of original findings

could not be observed in the replication
study

Reproducibility & Replicability in Science

30 Oct 2024Scientific IT Services 6

The Reproducibility project

• Replicate 100 experiments published in

top psychology journals

• One-half to two-thirds of original findings

could not be observed in the replication
study

Reproducibility & Replicability in Science

30 Oct 2024Scientific IT Services 7

Reproducibility & Replicability in Science

Replication:

new data and / or new method in independent study = same finding

Reproducible research:

same data + same method = same results

Peng (2011). doi:10.1126/science.1213847

https://science.sciencemag.org/content/334/6060/1226

30 Oct 2024Scientific IT Services 8

Defining the Scope: Computational Reproducibility

«Reproducibility is obtaining consistent results using the same input data,

computational steps, methods, and code and conditions of analysis. The term is

synonymous with "computational reproducibility”... »

«To help ensure the reproducibility of computational results, researchers should

convey clear, specific, and complete information about any computational

methods and data products that support their published results in order to

enable other researchers to repeat the analysis, unless such information is

restricted by non-public data policies. That information should include the data,

study methods, and computational environment. »

National Academies of Sciences, Engineering, and Medicine (2019). https://doi.org/10.17226/25303

https://doi.org/10.17226/25303

30 Oct 2024Scientific IT Services 9

Computational Reproducibility: What can go wrong?

• Code only runs on specific operating system

• Examples: Windows / Linux scripts, special programs (e.g. SigmaPlot)

• Code has specific external dependencies

• Example: wget https://zenodo.org/record/1234567/files/dataset.zip

• Code has specific internal dependencies (libraries, modules etc.)

https://zenodo.org/record/1234567/files/dataset.zip

30 Oct 2024Scientific IT Services 10

Computational Reproducibility: What can go wrong?

• Code only runs on specific operating system

• Examples: Windows / Linux scripts, special programs (e.g. SigmaPlot)

• Code has specific external dependencies

• Example: wget https://zenodo.org/record/1234567/files/dataset.zip

• Code has specific internal dependencies (libraries, modules etc.)

• Code has specific version dependencies

• Code may rely on availability of specific software licenses

• Example: fastaread function in the MATLAB Bioinformatics Toolbox

See https://numpy.org/doc/stable/release/1.19.0-

notes.html#changed-random-variate-stream-from-

numpy-random-generator-dirichlet

https://zenodo.org/record/1234567/files/dataset.zip
https://numpy.org/doc/stable/release/1.19.0-notes.html
https://numpy.org/doc/stable/release/1.19.0-notes.html
https://numpy.org/doc/stable/release/1.19.0-notes.html

30 Oct 2024Scientific IT Services 11

Computational Reproducibility: What can go wrong?

• Code only runs on specific operating system

• Examples: Windows / Linux scripts, special programs (e.g. SigmaPlot)

• Code has specific external dependencies

• Example: wget https://zenodo.org/record/1234567/files/dataset.zip

• Code has specific internal dependencies (libraries, modules etc.)

• Code has specific version dependencies

• Code may rely on availability of specific software licenses

• Example: fastaread function in the MATLAB Bioinformatics Toolbox

• Code may be incomprehensible (complex, undocumented workflows)

https://zenodo.org/record/1234567/files/dataset.zip

30 Oct 2024Scientific IT Services 12

Computational Reproducibility: What can go wrong?

• Code only runs on specific operating system

• Examples: Windows / Linux scripts, special programs (e.g. SigmaPlot)

• Code has specific external dependencies

• Example: wget https://zenodo.org/record/1234567/files/dataset.zip

• Code has specific internal dependencies (libraries, modules etc.)

• Code has specific version dependencies

• Code may rely on availability of specific software licenses

• Example: fastaread function in the MATLAB Bioinformatics Toolbox

• Code may be incomprehensible (complex, undocumented workflows)

• Analysis workflow may rely on manual steps

https://zenodo.org/record/1234567/files/dataset.zip

30 Oct 2024Scientific IT Services 13

Computational Reproducibility: Pieces of the Puzzle

Data

Environment

Source code

Results
Analysis

workflow

Slide credit: L. Wigge, R. Ågren & J. Sundh (NBIS & SciLifeLab, Sweden)

All parts of a computational analysis have to be reproducible!

30 Oct 2024Scientific IT Services 14

Computational Reproducibility: Pieces of the Puzzle

What is covered in today’s workshop? And what not?

Reproducible Computing Platforms
Out-of-the-box computational reproducibility

Part 1

Part 2

Part 4

Part 3

Part 5

30 Oct 2024Scientific IT Services 15

Computational Reproducibility: Questions?

30 Oct 2024Scientific IT Services 16

Tell us a bit about yourself

▪ Go to www.slido.com and enter the event code #code24

http://www.slido.com/

30 Oct 2024Scientific IT Services 17

Managing your Source Code

Code Management

• Code management is the process of handling changes in source code

• Proper code management is essential to ensure reproducible results

• Professional code management relies on Version Control Systems (VCS)

• Version control: tracking changes made to text files over time

• Git is by far the most popular version control system used world-wide in the software

community

30 Oct 2024 18Scientific IT Services

#1 #2 #3 master…

<empty> print(‘Hello’)

A=3+1

B=A+2

print(‘Hello’)

A=3+1

C=A+2

#read the data

f=open(‘file’)

…

How do I track the changes in my code with git?

30 Oct 2024Scientific IT Services 19

The basic Git workflow

• Modify files in your working directory

• Selectively stage the changes you

want to be part of your next commit,
adding only those changes to the

staging area

• Make a commit, which takes the files

as they are in the staging area and

stores that snapshot permanently to

your .git directory

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

[demo]

Test case : a program that takes in three files and print their content.
Text_1.txt contains the string “one”, text_2.txt ”two”, etc

git_demo 13:58:33 >>ls

total 32

-rw-r-xr-x 1 nmarounina staff 49 Mar 7 13:57 print_all.sh

-rw-r--r-- 1 nmarounina staff 4 Mar 7 13:54 text_1.txt

-rw-r--r-- 1 nmarounina staff 4 Mar 7 13:54 text_2.txt

-rw-r--r-- 1 nmarounina staff 6 Mar 7 13:54 text_3.txt

git_demo 13:59:00 >>./print_all.sh

one

two

three

git_demo 13:59:02 >>

30 Oct 2024Scientific IT Services 20

Start with git :
git_demo 13:59:20 >>git init #initialises git

Initialized empty Git repository in /Users/nmarounina/Desktop/git_demo/.git/

git_demo 13:59:24 >>

git_demo 13:59:34 >>git add * #adds all files to the staging

git_demo 13:59:40 >>git status #prints information about the current staging area

On branch main

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: print_all.sh

new file: text_1.txt

new file: text_2.txt

new file: text_3.txt

git_demo 13:59:50 >>

30 Oct 2024Scientific IT Services 21

First commit :

git_demo 13:59:52 >>git commit -m "Initial commit” #creating the first commit/snapshot

[main (root-commit) d5badf3] Initial commit

4 files changed, 5 insertions(+)

create mode 100755 print_all.sh

create mode 100644 text_1.txt

create mode 100644 text_2.txt

create mode 100644 text_3.txt

git_demo 14:00:16 >>git log #lists all of the commits for this project

commit d5badf3593de0e511005eee061132d77cdde0823 (HEAD -> main)

Author: Nadia Marounina <nmarounina@ethz.ch>

Date: Thu Mar 7 14:00:10 2024 +0100

Initial commit

git_demo 14:00:20 >>

30 Oct 2024Scientific IT Services 22

Git : How to share my code with others ?

30 Oct 2024 23Scientific IT Services

GitHub, Gitlab, etc..

Personal workstations

Git branching & merging

30 Oct 2024Scientific IT Services 24

#1 #2 #3

#4

#5

#6

#7 master

feature

Git branches & merges

• The initial / default branch is typically

called master or main

• Git manages branches very efficiently

• When merging merging branches,
conflicts must be resolved carefully

b
ra

n
c
h

in
g

[demo]

Creating a new branch:

git_demo 14:03:15 >>git branch numbers #creates a new branch named ”numbers”

git_demo 14:04:00 >>git status

On branch main

nothing to commit, working tree clean

git_demo 14:04:03 >>git branch #list all branches for the project

* main

numbers

git_demo 14:04:35 >>git checkout numbers #switch to the new branch

Switched to branch 'numbers'

git_demo 14:04:53 >>

30 Oct 2024Scientific IT Services 25

After changing the three text files in the new branch and commiting it
again :

git_demo 14:04:56 >>vi text_1.txt #vi is a text editor. Here I change ‘one’ to ‘1’…

git_demo 14:05:07 >>vi text_2.txt #... ‘two’ to ‘2’

git_demo 14:05:16 >>vi text_3.txt #... ‘three’ to ‘3’

git_demo 14:05:29 >>./print_all.sh

1

2

3

git_demo 14:05:37 >>git commit -m "Changed from text to number” #the change has been

committed

[… output excluded …]

git_demo 14:05:51 >>

30 Oct 2024Scientific IT Services 26

By switching branches, you change your files in your folder:

git_demo 14:06:39 >>git checkout main

Switched to branch 'main'

git_demo 14:07:29 >>./print_all.sh

one

two

three

git_demo 14:07:40 >>git checkout numbers

Switched to branch 'numbers'

git_demo 14:07:45 >>./print_all.sh

1

2

3

git_demo 14:07:46 >>

30 Oct 2024Scientific IT Services 27

ETH Zurich GitLab Service

30 Oct 2024 28Scientific IT Services

https://gitlab.ethz.ch

https://gitlab.ethz.ch/

ETH Zurich GitLab Service

• Integrated file, task and documentation management for individuals and / or groups

• Private, group and public repositories

• Built-in light-weight Wiki (protocols, list of materials etc.)

• Free for small repositories (< 2GB), otherwise yearly price of 250 CHF / TB / year

• Local and remote copies (off-site backup)

• Data can be exported (e.g. to Github)

• Built-in Container registry

30 Oct 2024 29Scientific IT Services

ETH GitLab Service Usage

Git – General Recommendations & Resources

30 Oct 2024 30Scientific IT Services

Recommendations for working with Git

• Commit early & often

• Provide short but meaningful commit messages

• Do not store large data files in Git repositories

• e.g. images, movies, binary files

• Use .gitignore file to exclude

• Or consider tools such as git-lfs or git-annex

• Beware when resolving conflicts during merge or pull

operations

• A successful merge for Git may not be a
successful merge for you

Resources for getting started with Git

• SIS can provide hands-on Git tutorials / workshops

• Pro Git book by S. Chacon & B. Straub

• Numerous tutorials available on the web / YouTube

• W3Schools Git tutorial

• Software Carpentry Git course

• Git tutorial for scientists

• List of Git GUI clients

https://git-lfs.github.com/
https://git-annex.branchable.com/
https://git-scm.com/book/en/v2/
https://www.w3schools.com/git/default.asp
https://swcarpentry.github.io/git-novice/
https://gitbookdown.dallasdatascience.com/
https://git-scm.com/downloads/guis

30 Oct 2024Scientific IT Services 31

Management of source code: Questions?

30 Oct 2024Scientific IT Services 32

Managing Dependencies & Computing

Environments

Reproducible Computing Environment

30 Oct 2024Scientific IT Services 33

Results

Computing Environment
and Infrastructure

Workflow

Code

Data
▪ Problem:

Full reproducibility requires the possibility to recreate the system that was

originally used to generate the results

Reproducible Computing Environment

30 Oct 2024Scientific IT Services 34

Results

Computing Environment
and Infrastructure

Workflow

Code

Data
▪ Problem:

Full reproducibility requires the possibility to recreate the system that was

originally used to generate the results

▪ Solution:

▪ Bundle your application and all dependencies

→ Environment Isolation & Dependency management

▪ Tools:

• Application / software level: Conda, pip, virtualenv, renv, Devbox

• Containerization: Docker

• Virtualization (Virtual Machine, VM): VirtualBox, VMware

Reproducible Environment for R and Python

• Open source: Anaconda and Miniconda

• Commercial support: Anaconda Enterprise

− Note: certain functionality requires a paid license outside

education / academia

• Multi-platform: Windows, macOS, Linux

• Environment Management System

− Isolated computing environments on the same system

− Documentation of the computing environment

• Package Management System

− Supported programming Languages: Python, R, …

− System libraries shipped in binary format

− Resolve dependencies & conflicts between packages

30 Oct 2024Scientific IT Services 35

my_app

package_1

package_N

python=3

package_2

python=2

30 Oct 2024Scientific IT Services 36

environment

package

- Conda environments are isolated

- Directory containing specific collection of

installed Conda packages

- Conda keeps track of the dependencies

between packages

- System-level libraries, Python or other modules,

executable programs, other components

p
a
c
k
a
g

e
e
n

v
ir

o
n

m
e
n

t

conda channels
- Remote directories with packages

Slide credit: L. Wigge, R. Ågren & J. Sundh (NBIS & SciLifeLab, Sweden)

channels:

- defaults

- conda-forge

dependencies:

- python=3.8

- jupyterlab

environment.yml

Conda automatically creates an

environment file with packages

and dependencies

Conda in a Nutshell

Environment and Package Management Systems

Language Environment Management Package Management Comments

Python 2 (not

supported)

virtualenv, conda pip, conda

Python 3 venv, virtualenv, pipenv

poetry, conda

pip, pipenv, poetry, conda only conda can install

different Python versions

(pyenv can be used)

R renv, conda renv, conda only conda can install

different R versions

Julia Pkg, conda Pkg, conda conda provides outdated

Julia versions

Matlab N/A Add-on manager, Matlab

Package Manager (unofficial)

Matlab search path

determines dependencies

30 Oct 2024Scientific IT Services 37

Alternatives to Conda are emerging!

pixi Devbox

https://github.com/mobeets/mpm
https://github.com/mobeets/mpm
https://prefix.dev/
https://www.jetify.com/devbox

Conda Hands-on Session

30 Oct 2024Scientific IT Services 38

https://siscourses.ethz.ch/reproducible_computing/Conda.slidy.html

https://siscourses.ethz.ch/reproducible_computing/Conda.slidy.html

30 Oct 2024Scientific IT Services 39

Conda - What can go wrong?

• The package metadata (dependency list) is updated (not very likely)

• The package is deleted by the owner

• The package is not available under another platform

• There is no conda package for what you are looking for

• Complex dependencies may fail or take a long time to resolve

30 Oct 2024Scientific IT Services 40

30 Oct 2024Scientific IT Services 41

Virtualizing Computing Environments

Conda - What can go wrong?

• The package metadata (dependency list) is updated (not very likely)

• The package is deleted by the owner

• The package is not available under another platform

• There is no conda package for what you are looking for

• Complex dependencies may fail or take a long time to resolve

30 Oct 2024Scientific IT Services 42

Reproducible Environment

30 Oct 2024Scientific IT Services 43

▪ Problem:

Full reproducibility requires the possibility to recreate the system that was

originally used to generate the results

▪ Solution:

▪ Bundle your application and all dependencies

→ Environment Isolation & Dependency management

▪ Tools:

• Application / software level: Conda, pip, virtualenv, renv

• Containerization: Docker

• Virtualization (Virtual Machine, VM): VirtualBox, VMware

30 Oct 2024Scientific IT Services 44

• A virtual machine (VM) is an operating system (“guest”) that runs inside another

computing environment (“host”).

• Advantages:

− Allows multiple OS environments on a single physical computer

− VMs are widely available and are easy to manage, maintain and distribute

− Offers application provisioning and disaster recovery options

• Drawbacks:

− They are not as efficient as a physical computer because the hardware resources are

distributed in an indirect way.

− Multiple VMs running on a single physical machine can deliver unstable performance

Source: https://searchservervirtualization.techtarget.com/definition/virtual-machine

Reproducible Environment – Virtual Machines

https://searchservervirtualization.techtarget.com/definition/virtual-machine

30 Oct 2024Scientific IT Services 45

• Container: Operating system level virtualization method for running software without launching

an entire virtual machine

• In simpler words: containers allow you to package your software / pipeline with the

dependencies inside a reproducible, easy to share, runnable file

Reproducible Environment – Containerization

30 Oct 2024Scientific IT Services 46

• Container: Operating system level virtualization method for running software without launching

an entire virtual machine

• In simpler words: containers allow you to package your software / pipeline with the

dependencies inside a reproducible, easy to share, runnable file

• Example: Docker containers

Tool A v1.2

Tool B v2.3

myPipelineScript.py

Python v3.6.3

Container

Reproducible Environment – Containerization

30 Oct 2024Scientific IT Services 47

• Container: Operating system level virtualization method for running software without launching

an entire virtual machine

• In simpler words: containers allow you to package your software / pipeline with the

dependencies inside a reproducible, easy to share, runnable file

• Example: Docker containers

Container

same result !

sharerun

Reproducible Environment – Containerization

Bare Metal, Virtual Machine (VM) and Container (Docker)

30 Oct 2024Scientific IT Services 48

App

Bin/Libs

App

LibBin/Libs

Host OS

Server

Bare Metal

VM
App

Bin/Libs

Guest OS

VM
App

LibBin/Libs

Guest OS

Hypervisor

Host OS

Server

VM Based

Container

App

Bin/Libs

Container

App

LibBin/Libs

Container Engine

Host OS

Server

Container Based

Shared Host OS kernel

Virtual Machines vs Containers

30 Oct 2024Scientific IT Services 49

VMs (Virtual Box) Containers (Docker)

Use case Complex Apps (GUI, …) Data Analysis Scripts, Simple Apps,

Microservices, Continuous Integration

Virtualization Hardware-level OS-level

Size GB MB

Startup time Minutes Seconds

Guest OS Windows, macOS, Linux Primarily Linux-based

Host OS Windows, macOS, Linux Linux,

Windows 10 / macOS with hypervisor

Overhead (RAM, CPU) High - reduced performance Low - close to native performance

Security Better (fully isolated) Poorer (shared kernel)

How to use Easy if you know to install OS New things to learn

Getting started www.virtualbox.org/manual/ch01.html https://docs.docker.com/get-started/

https://www.virtualbox.org/manual/ch01.html
https://docs.docker.com/get-started/

30 Oct 2024Scientific IT Services 51

Reproducible computational environment: Questions?

30 Oct 2024Scientific IT Services 52

Interactive Computational Notebooks

Live Editor

• Applications that combine documentation, code, input and output generated by the code, e.g. graphs,

plots (Nature 515, 151–152)

• Useful for exploratory data analysis, sharing and reproducibility

30 Oct 2024Scientific IT Services 53

• Open source

• > 40 languages supported (Python,

R, Julia, Matlab, IDL, etc.)

• Open source + commercial edition

• Mainly for development in R but

other languages supported

• Commercial

• Used in scientific, engineering,

mathematical fields

Interactive Notebooks

• Commercial

• Used in mathematical fields

https://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261

• Jupyter notebook: web-based interactive computational environment

30 Oct 2024Scientific IT Services 54

Interactive Notebooks: Jupyter

• Jupyter notebook: web-based interactive computational environment

• JupyterLab: web-based interactive development environment for notebooks, code, and data

30 Oct 2024Scientific IT Services 55

Interactive Notebooks: Jupyter

• Jupyter notebook: web-based interactive computational environment

• JupyterLab: web-based interactive development environment for notebooks, code, and data

• Dozens of programming languages supported (core: Julia, Python, R)

• Extensions to build simple user interfaces (sliders, buttons etc.)

• Notebook export in various formats (HTML, PDF, Python …)

• Integration with ETH scientific computing infrastructure

(see https://jupyter.euler.hpc.ethz.ch/hub/)

• JupyterHub: multi-user version of the notebook for research labs

30 Oct 2024Scientific IT Services 56

Interactive Notebooks: Jupyter

https://jupyter.euler.hpc.ethz.ch/hub/

30 Oct 2024Scientific IT Services 57

Interactive Notebooks: Jupyter [demo]

Gravitational wave physics

https://github.com/gwastro/o2-bbh-pe/blob/master/data_release_o2_bbh_pe.ipynb

30 Oct 2024Scientific IT Services 58

Options for running Jupyter

• Local installation on your computer

• Dedicated JupyterHub server (e.g. running on virtual machine in the cloud or on Euler)

• Public cloud-based offerings

• Renku: https://renkulab.io/

• MyBinder: https://mybinder.org/

• Google cloud: https://colab.research.google.com/notebooks

• To get started

• https://jupyter.org/try

https://renkulab.io/
https://mybinder.org/
https://colab.research.google.com/notebooks
https://jupyter.org/try

30 Oct 2024Scientific IT Services 59

Local installation of Jupyter

• Option 1: Anaconda

• Installs Jupyter, Python, R and many other packages

• Start JupyterLab or Notebook from Anaconda Navigator

https://www.anaconda.com/products/individual

30 Oct 2024Scientific IT Services 60

Local installation of Jupyter

• Option 1: Anaconda

• Installs Jupyter, Python, R and many other packages

• Start JupyterLab or Notebook from Anaconda Navigator

• Option 2: Miniconda

• conda install -c conda-forge jupyterlab

• Start JupyterLab: jupyter-lab

• Start Notebook: jupyter-nbclassic

• Option 3: Python only

• pip install --upgrade pip wheel

• pip install --upgrade jupyterlab

• Start Lab / Notebook: jupyter-lab / jupyter-nbclassic

https://www.anaconda.com/products/individual
https://docs.conda.io/en/latest/miniconda.html
https://www.python.org/downloads/

30 Oct 2024Scientific IT Services 61

Interactive Notebooks – what can go wrong?

• Versioning

• Version control of even moderately complex NBs is challenging

• Tracking NB history is harder than for traditional source code

• Some tools may help (e.g. nbdime, Jupytext)

Chattopadhyay et al. (2020). What's Wrong with Computational Notebooks?

doi:10.1145/3313831.3376729

https://nbdime.readthedocs.io/en/latest/
https://jupytext.readthedocs.io/en/latest/
https://doi.org/10.1145/3313831.3376729

30 Oct 2024Scientific IT Services 62

Interactive Notebooks – what can go wrong?

• Versioning

• Version control of even moderately complex NBs is challenging

• Tracking NB history is harder than for traditional source code

• Some tools may help (e.g. nbdime, Jupytext)

Chattopadhyay et al. (2020). What's Wrong with Computational Notebooks?

doi:10.1145/3313831.3376729

https://nbdime.readthedocs.io/en/latest/
https://jupytext.readthedocs.io/en/latest/
https://doi.org/10.1145/3313831.3376729

30 Oct 2024Scientific IT Services 63

Interactive Notebooks – what can go wrong?

• Versioning

• Version control of even moderately complex NBs is challenging

• Tracking NB history is harder than for traditional source code, especially with “classical” git

• Some jupyter-targeted tools may help (e.g. nbdime)

• Reproducibility

• Interactive working mode can result in hard-to-reproduce notebooks

• Discipline is needed! Regular pruning & refactoring; “Restart kernel & Run all” is your friend

• Collaboration

• Collaborative editing : has not been possible until recently. Must be done in JupyterHub or cloud.

• Security

• Data confidentiality & access controls may be problematic

Chattopadhyay et al. (2020). What's Wrong with Computational Notebooks?

doi:10.1145/3313831.3376729

https://nbdime.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/stable/tutorial/collaboration-users.html
https://doi.org/10.1145/3313831.3376729

30 Oct 2024Scientific IT Services 64

Reproducible Computing Platforms

• Integrated, web-based solutions for reproducible and collaborative data analysis and computing

• Usually built upon proven open-source technologies (Git, Conda, Docker etc.)

• Technical complexity hidden from user (or made easily accessible)

• Platforms provide low entry barrier access to fully reproducible computing

• Commercial platforms

− Examples: Code Ocean, Google Colaboratory, …

− Costs are incurred by usage of underlying cloud infrastructure (storage, compute, data transfer!)

− Beware of data ownership, licensing issues and general T&Cs

• Community platforms

− Examples: mybinder, Renkulab.io

− Usually free of charge but resources are limited

30 Oct 2024Scientific IT Services 65

Reproducible Computing Platforms

https://codeocean.com/
https://colab.research.google.com/notebooks
https://mybinder.org/
https://renkulab.io/

30 Oct 2024Scientific IT Services 66

Reproducible Computing Platforms: renkulab.io

• Renkulab is a platform for reproducible data science from the Swiss Data Science Center (SDSC)

https://renkulab.io/
https://datascience.ch/

30 Oct 2024Scientific IT Services 67

Reproducible Computing Platforms: renkulab.io

• Renkulab is a platform for reproducible data science from the Swiss Data Science Center (SDSC)

• First, login to Renkulab (use your SWITCH Edu-ID or register for a new account)

• After login, go to the Project search and search for eth-rdm-reproducible-analysis-workshop

https://renkulab.io/
https://datascience.ch/

30 Oct 2024Scientific IT Services 68

Reproducible Computing Platforms: renkulab.io

• Renkulab is a platform for reproducible data science from the Swiss Data Science Center (SDSC)

• First, login to Renkulab (use your SWITCH Edu-ID or register for a new account)

• After login, go to the Project search and search for eth-rdm-reproducible-analysis-workshop

• Select the project called eth-rdm-reproducible-analysis-workshop and fork it to your account

https://renkulab.io/
https://datascience.ch/

30 Oct 2024Scientific IT Services 69

Reproducible Computing Platforms: renkulab.io

• In the short demo, we will focus on 3 aspects of the platform related to reproducibility:

− Files and datasets (1)

− Compute sessions (2)

− Integration with Gitlab (3)

• Note: Renku is currently undergoing a major version transition from 1.0 to 2.0 (beta)

→ See the Renku Community Portal for details

1 2

3

https://renku.notion.site/Renku-Community-Portal-2a154d7d30b24ab8a5968c60c2592d87

30 Oct 2024Scientific IT Services 70

Wrap-up & Discussion

30 Oct 2024Scientific IT Services 71

What’s in it for me?

Slide credit: L. Wigge, R. Ågren & J. Sundh (NBIS & SciLifeLab, Sweden)

What was I

thinking???

I’ll just change

this and press
”rerun”.

After workshop (and some effort) ☺Before workshop

One year in submission loop and reviewer comments are finally back…

At the start of the project

▪ Forced to think about scope and limitations

▪ Improved structure and organization

During the project

▪ Easier to rerun experiments and analysis

▪ Closer interaction between collaborators

▪ Much of the manuscript "writes itself"

After the end of the project

▪ Faster resumption of research by others (or

your future self), thereby increasing the impact

of your work

▪ Increased visibility in the scientific community

30 Oct 2024Scientific IT Services 72

What’s in it for me?

▪ Aim for improvement, not perfection!

▪ RDM requires WORK & TIME, but the time spent on this is an investment for the future!

▪ Contact us for consultations / trainings on data management, version control, reproducible

computational workflows or data science support

sis.helpdesk@ethz.ch

mailto:sis.helpdesk@ethz.ch

30 Oct 2024Scientific IT Services 73

Contacts

Henry Lütcke

henry.lutcke@id.ethz.ch

sis.helpdesk@ethz.ch

https://sis.id.ethz.ch/

Feedback: https://www.umfrageonline.ch/c/scientificcomputing

Nadia Marounina

nadejda.marounina@id.ethz.ch

mailto:henry.lutcke@id.ethz.ch
https://sis.id.ethz.ch/
https://www.umfrageonline.ch/c/scientificcomputing
mailto:nadejda.marounina@id.ethz.ch

30 Oct 2024Scientific IT Services 74

Any final questions on what we have discussed this morning?

	Introduction (Henry, 20')
	Slide 1: Reproducible Scientific Computing and Data Analysis
	Slide 2: Overview of today’s workshop
	Slide 3
	Slide 4: Reproducibility & Replicability in Science
	Slide 5: Reproducibility & Replicability in Science
	Slide 6: Reproducibility & Replicability in Science
	Slide 7: Reproducibility & Replicability in Science
	Slide 8: Defining the Scope: Computational Reproducibility
	Slide 9: Computational Reproducibility: What can go wrong?
	Slide 10: Computational Reproducibility: What can go wrong?
	Slide 11: Computational Reproducibility: What can go wrong?
	Slide 12: Computational Reproducibility: What can go wrong?
	Slide 13: Computational Reproducibility: Pieces of the Puzzle
	Slide 14: Computational Reproducibility: Pieces of the Puzzle
	Slide 15: Computational Reproducibility: Questions?
	Slide 16: Tell us a bit about yourself

	Version Control (Nadia, 30')
	Slide 17
	Slide 18: Code Management
	Slide 19: How do I track the changes in my code with git?
	Slide 20: Test case : a program that takes in three files and print their content. Text_1.txt contains the string “one”, text_2.txt ”two”, etc
	Slide 21: Start with git :
	Slide 22: First commit :
	Slide 23: Git : How to share my code with others ?
	Slide 24: Git branching & merging
	Slide 25: Creating a new branch:
	Slide 26: After changing the three text files in the new branch and commiting it again :
	Slide 27: By switching branches, you change your files in your folder:
	Slide 28: ETH Zurich GitLab Service
	Slide 29: ETH Zurich GitLab Service
	Slide 30: Git – General Recommendations & Resources
	Slide 31: Management of source code: Questions?

	Computational Environments (Henry, 40')
	Slide 32
	Slide 33: Reproducible Computing Environment
	Slide 34: Reproducible Computing Environment
	Slide 35: Reproducible Environment for R and Python
	Slide 36: Conda in a Nutshell
	Slide 37: Environment and Package Management Systems
	Slide 38: Conda Hands-on Session
	Slide 39
	Slide 40: Conda - What can go wrong?

	Virtualization (Henry / Nadia, 20')
	Slide 41
	Slide 42: Conda - What can go wrong?
	Slide 43: Reproducible Environment
	Slide 44: Reproducible Environment – Virtual Machines
	Slide 45: Reproducible Environment – Containerization
	Slide 46: Reproducible Environment – Containerization
	Slide 47: Reproducible Environment – Containerization
	Slide 48: Bare Metal, Virtual Machine (VM) and Container (Docker)
	Slide 49: Virtual Machines vs Containers
	Slide 51: Reproducible computational environment: Questions?

	Computational Notebooks (Nadia, 20')
	Slide 52
	Slide 53: Interactive Notebooks
	Slide 54: Interactive Notebooks: Jupyter
	Slide 55: Interactive Notebooks: Jupyter
	Slide 56: Interactive Notebooks: Jupyter
	Slide 57: Interactive Notebooks: Jupyter [demo]
	Slide 58: Options for running Jupyter
	Slide 59: Local installation of Jupyter
	Slide 60: Local installation of Jupyter
	Slide 61: Interactive Notebooks – what can go wrong?
	Slide 62: Interactive Notebooks – what can go wrong?
	Slide 63: Interactive Notebooks – what can go wrong?

	Platforms (Henry, 20')
	Slide 64
	Slide 65: Reproducible Computing Platforms
	Slide 66: Reproducible Computing Platforms: renkulab.io
	Slide 67: Reproducible Computing Platforms: renkulab.io
	Slide 68: Reproducible Computing Platforms: renkulab.io
	Slide 69: Reproducible Computing Platforms: renkulab.io

	Wrap-up (Henry, 5')
	Slide 70
	Slide 71: What’s in it for me?
	Slide 72: What’s in it for me?
	Slide 73: Contacts
	Slide 74: Any final questions on what we have discussed this morning?

