
26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 1/48

https://siscourses.ethz.ch/python_one_day
(https://siscourses.ethz.ch/python_one_day)

About me

my name is Uwe Schmitt
I work for Scientific IT Services of ETH
I started to use Python in 2003
Python is still my favorite all purpose language

About Scientific IT Services (SIS)
group of connected experts from different backgrounds
assist researchers in IT related issues

For example:

we run Euler computing cluster
we developed and maintain openBIS and openBIS-ELN
we offer consulting related to data analysis and programming
we develop software on demand
we maintain software
we offer courses
code and data clinics

About this course

introduction to basic topics and concepts
we can not learn all Python features
exercise section for every topic
your programming speed will vary, so: some of you will not manage to solve all exercises in the
given time, this is why we have some optional exercises.
lunch break one hour
feel free to take a break during the exercise sections

In this course we use:

Python 3
PyCharm IDE installed on your computers (community edition of PyCharm is for free)

https://siscourses.ethz.ch/python_one_day

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 2/48

About Python 2 vs Python 3

Python community developed Python 3 to clean up the language, but this transition from Python 2 to
Python 3 broke backwards compatibility:

Python 3.Y programs will run with Python 3.X interpreter if Y <= X
Same for Python 2
But 2.X programs will not run if your intepreter is 3.Y

Which version should I choose ?

Python 3 is definitely the better language !
All new features and improvements happen in Python 3
Use Python 3.4 if it should run on other platforms
Use Python 3.6 if you can install Python as you like

When to use Python 2?

existing code base in Python 2
if you depend on libraries not ported to Python 3
which is rarely the case

How to use the code from this course with Python 2.7 ?

Just start your script with the following lines, this should make most of the code from today runnable
with Python 2.7:

from __future__ import print_function, division
try:
 input = raw_input
 range = xrange
except NameError:
 pass

Usefull links:

get Python: http://python.org/downloads (http://python.org/downloads)
official documentation: https://docs.python.org (https://docs.python.org)
PyCharm (IDE): https://jetbrains.com/pycharm (https://jetbrains.com/pycharm)
Jupyter Notebook: https://jupyter.org/ (https://jupyter.org/)
Hitchhiker's Guide to Python: https://docs.python-guide.org (https://docs.python-guide.org)
Python Module Of The Week (PyMOTW): https://pymotw.com (https://pymotw.com)

I want to analyze data with Python

See http://www.scipy-lectures.org/intro/ (http://www.scipy-lectures.org/intro/)

About Python

http://python.org/downloads
https://docs.python.org/
https://jetbrains.com/pycharm
https://jupyter.org/
https://docs.python-guide.org/
https://pymotw.com/
http://www.scipy-lectures.org/intro/

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 3/48

easy to read syntax and easy to learn
interpreted language, no compilation step needed
supports efficient programming
multi praradigm: object oriented, procedureal and functional concepts
huge eco system of external libaries (Python packages, "batteries included")
multi purpose: scientific applications, web frameworks, game programming, ...
open source
platform independent (almost)

Increasing popolarity according to google searchs for tutorials

0. Setting up PyCharm
The following instructions may raise warning from the fire wall which you can ignore. It also might ask
you some questions related to the styling of PyCharm, the offered default settings are fine.

Open PyCharm on your computer (on Windows under Jet Brains in the menu)
Create a new Project
Create a new Python script (new Python File and NOT new File)
Enter print(42) in the script editor
Execute the program (see Run menu)

How to use this script
the square boxes contain code
below such a box you see the output
try to match output to code

Dont copy-paste !

1. Basics: variables, a bit of math and console
input/output

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 4/48

print writes strings and values
a plain print() prints a line break aka "\n"
separate arguments with ,

print("values are", 1, 2, 3)
print()
print("done")

Dynamic type system

No declaration of variable types, just assign values. Type of variable is determined from value on the
right side of =:

a = 1.23
print(a * a)

Check type of a variable with built in type function:

print(type(a))

b = 4711 * 42
print(type(b))

c = "I heart Python"
print(type(c))

Rebinding

you may reuse variable names in a script, the type might change:

a = 6
print(a, type(a))
a = 3.14
print(a, type(a))

values are 1 2 3

done

1.5129

<class 'float'>

<class 'int'>

<class 'str'>

6 <class 'int'>
3.14 <class 'float'>

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 5/48

Comments in Python

this is a single line comment
print(3) # and a comment at the end of the line

"""
this is a
multiline comment
"""

Valid variable names:

start with lower or upper case letter or _
followed by lower or upper case letters or _ or digits
names of builtin functions allowed (but not recommended)
names of Python statements not allowed.

those are fine:
a_b_c = 1
a123 = 2
_aXzA = 3

not so good, you see the different color ?
type = 4

bang !
for = 3

3

'\nthis is a \nmultiline comment\n'

 File "<ipython-input-9-e0de88e4150d>", line 10
 for = 3
 ^
SyntaxError: invalid syntax

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 6/48

PEP 8 (https://www.python.org/dev/peps/pep-0008/
(https://www.python.org/dev/peps/pep-0008/)) recommends:

use lower case letters and "_" unless you name classes:

prefer this_is_a_long_name over thisIsALongName.

use "CamelStyle" only for class names
PyCharm IDE indicates PEP 8 violations
PyCharm "reformat code" functionality helps
further: use only lower case letters for file names

Naming conflicts:

built in functions as type and statements as for may conflict with your preferred variable
name
use type_ and for_ instead as names.

Basic math

+, *, -, / and parenthesis as usual, ** for exponentiation:

print(2 * (3 + 4) - 7)

print(2 ** 10)

The carret operator ^ also exists in Python (https://stackoverflow.com/questions/2451386/what-
does-the-caret-operator-in-python-do (https://stackoverflow.com/questions/2451386/what-does-
the-caret-operator-in-python-do)) but does not compute exponentation as in some other
programming languages:

print(2 ^ 10)

Python 3 (Python 2 was different) always does floating point division:

print(-7 / 2)

Integer divison (round down to the next integer) is //:

7

1024

8

-3.5

https://www.python.org/dev/peps/pep-0008/
https://stackoverflow.com/questions/2451386/what-does-the-caret-operator-in-python-do

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 7/48

print(-7 // 2)

% for modulo (aka division reminder) computation:

print(13 % 4)

We use % in a few examples in this script to check if a given number is a multiple of another number.
For example 12 is a multiple of 4 because 12 % 4 is zero.

Integers do not overflow in Python:

x = 2 ** 62 # this can be represented by a 64 bit integer.
y = 2 ** 63 # this overflows in 64 bit integers
print(x, y)

There is no distinction between single or double precision floats, the Python float type is always with
double precision, but may overflow:

print(2.0 ** 1000)
print(2.0 ** 1500)

Algebraic updates:

x = 3
x += 3 # same as x = x + 3
x *= 2 # same as x = x * 2
x /= 4 # same as x = x / 4
print(x)

-4

1

4611686018427387904 9223372036854775808

1.0715086071862673e+301

OverflowError Traceback (most recent ca
ll last)
<ipython-input-17-4dd8e105c5a9> in <module>()
 1 print(2.0 ** 1000)
----> 2 print(2.0 ** 1500)

OverflowError: (34, 'Result too large')

3.0

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 8/48

Math with the math module

Python ships with extra modules collected in the so called "Python standard library".
The documentation on http://python.org (http://python.org) is complete but
https://pymotw.com/3/ (https://pymotw.com/3/) is more detailed and shows more examples.
Use import at the beginning of your script to use such modules.

import math

print(math)

Now functions and constanstants are "attached" to math (Python speak: "attriibutes" of "math"):

print(math.pi)

print(math.sin(1.0))

Python help system:

print(help(math)) # lots of output
print(help(sum))

Alternative ways to import functions, values, etc:

from math import pi, e, sin, log

print(log(e))

from math import * works, it imports everything (which might be a lot), but is dangerous, for
example this overwrites a variable e:

e = 123
from math import *
print(e)

<module 'math' from '/usr/local/Cellar/python35/3.5.2/Frameworks/Py
thon.framework/Versions/3.5/lib/python3.5/lib-dynload/math.cpython-
35m-darwin.so'>

3.141592653589793

0.8414709848078965

1.0

2.718281828459045

http://python.org/
https://pymotw.com/3/

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 9/48

Simple input output input

name = input("what is your name ? ")
print("hi", name, "how do you do ?")
print(type(name))

Type conversions:

print(float("1.23"))

print(int("42"))

print(int("1.2"))

x = float(input("give me a number: "))
print(x, "squared is", x * x)

what is your name ? bob
hi bob how do you do ?
<class 'str'>

1.23

42

ValueError Traceback (most recent ca
ll last)
<ipython-input-30-3063a460e01f> in <module>()
----> 1 print(int("1.2"))

ValueError: invalid literal for int() with base 10: '1.2'

give me a number: 1.23
1.23 squared is 1.5129

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 10/48

Exercise session 1
1. What is the reminder of divided by ?
2. Which number is larger: or ?
3. Start a "Python Console" in PyCharm (you find this in "Tools" menu). The console allows you to

enter Python commands for direct execution.
4. Type in the console: import math, then help(math.hypot) and read the output.
5. Write a script which asks for the diameter of a circle and computes its area and circumference.
6. Run import this.
7. Run import antigravity.

Optional exercises:
1. Write a program which asks for the coefficients and in the equation and

prints the solution(s):

What do you get for and ? What happens if you use and ?
2. Use the module cmath instead of math for the preceeding exercise and test again with

and .
3. Compute math.hypot(1e300, 1e300). Now implement the same computation using the

pythagorean theorem. and do the same computation again, what do you observe ? Can you
explain your implementation and rewrite the formula to match the result of
math.hypot(1e300, 1e300)?

2. String basics

Strings are defined using delimiters " or ' or """ or ''':

If you choose " as delimiter you may use ' in the string and the other way round.

print("hi, it's time to go")

print('this is "a quote"')

long = """multi line string ...
it works"""

print(long)

The repr function gives us more detailed information (usefull when debugging)

2
63

13

π
e

e
π

p q + px + q = 0x
2

x = − ± .
p

2
− q()p2

2
‾ ‾‾‾‾‾‾‾‾‾√

x p = 2 q = 1 p = 1 q = 1

p = 1

q = 1

hi, it's time to go

this is "a quote"

multi line string ...
it works

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 11/48

print(repr(long))

Multi line comments in Python

this is a single line comment

print(3)

"""
this is a multi line comment
the comment ends here
"""

print(4)

String "algebra":

print("3.1" + '41')

print(3 * "\o/ ")

print(len("12345"))

Creating strings using string interpolation (old fashioned)

String interpolation relaces placeholders eg %s by given values. The expression

template % args

creates a new string by replacing the placeholders in template provided by the value(s) in args:

name = "uwe"
greeting = "hi '%s' how do you do" % name
print(greeting)

'multi line string ...\nit works'

3
4

3.141

\o/ \o/ \o/

5

hi 'uwe' how do you do

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 12/48

You can have multiple placeholders and arguments, but the number of placeholders and the number of
arguments must be the same. For multiple arguments you have to use paranthesis as shown below:

a = 1
b = 2
output = '%s plus %s is %s' % (a, b, a + b)
print(output)

Other placehoders as %s exist, eg for formatting floats with given precision:

import math
print("pi up to 3 digits is %.3f" % math.pi)

More details at https://docs.python.org/3/library/stdtypes.html#string-formatting-operations
(https://docs.python.org/3/library/stdtypes.html#string-formatting-operations)

String formatting (modern!)

print("{} = {} + {}".format(a + b, a, b))
print("{2} = {0} + {1}".format(a, b, a+b))
print("{c} = {a} + {b}".format(a=a, b=b, c=a+b))

print("{pi:.3f}".format(pi=math.pi))

Many more options, see https://www.digitalocean.com/community/tutorials/how-to-use-string-
formatters-in-python-3 (https://www.digitalocean.com/community/tutorials/how-to-use-string-
formatters-in-python-3) and the cheat sheet at https://pyformat.info/ (https://pyformat.info/)

String methods

Many string operations are "attached" to string object.

Python strings are immutable ("const"). So string methods never change the string oject in place. So for
example the following upper method creates and returns a new string:

1 plus 2 is 3

pi up to 3 digits is 3.142

3 = 1 + 2
3 = 1 + 2
3 = 1 + 2

3.142

https://docs.python.org/3/library/stdtypes.html#string-formatting-operations
https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3
https://pyformat.info/

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 13/48

transforms string "hello" to a new string:
greeting = "hello"
print(greeting.upper())
print(greeting) # unchanged !

Method calls can be chained. For example this startswith method ...

print("hi you".startswith("hi"))

... can be called on the result of upper():

print("hi you".upper().startswith("HI"))

Overview of available string methods

You can use

print(help(str))

to list all available string methods

Some useful string methods:

count(substring) counts non overlapping occurrences of substring
replace(a_string, b_string) replaces all occurrences of a_string by b_string
lower() and .upper() convert characters to upper resp. lower case
strip() removes all white-spaces (space, tab and new line characters) from both ends of the
string
strip(characters) removes all single characters occurring in characters from both ends of
the string.
lstrip() as .strip() but only from the beginning of the string
rstrip() as .strip() but only from the end of the string
startswith(txt) checks if the given strings starts with txt
endswith(txt) checks if the given string ends with txt.

You find a more complete list at https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet
(https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet)

String "slicing"

HELLO
hello

True

True

https://www.shortcutfoo.com/app/dojos/python-strings/cheatsheet

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 14/48

Use [..] for accessing parts of a string, counting start with 0.

print("Python"[1])

Negative indices start at the end, -1 is the last character, -2 the character before the last character and
so on:

print("Python"[-2])

To access substrings we use the so calles slicing notation [m:n], the first value is the starting index, the
secon one the end index, the end index is exclusive:

print("Python"[2:4])

Why exlusive right limits ?

The following relations hold for slicing:

1. len(a[n:m]) == m - n
2. a[i:j] + a[j:k] == a[i:k].

Some other examples for slicing:

print("Python"[1:-1])

short forms:

print("Python"[:2])

print("Python"[2:])

Limits can be exeeded:

"abc"[1:5]

y

o

th

ytho

Py

thon

'bc'

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 15/48

"abc"[5:7]

Strings are immutable

You can not modify a string in place, instead you have to create a new one !

Exercise session 2
1. Reproduce the examples starting at "Creating strings using string interpolation".
2. Try to forecast the values of the variables in the following snippet using pen and paper, use
help(str.rstrip) or the internet for looking up the used methods. Then use Python to
validate your results.

values = "012" * 3 + """'a'bc"""
a = values[:2] + values[0] + values[2:3]
b = a + values[len(values) - 2].upper()
c = a.strip('0')
d = a.find("A")
e = "{2} / {1} / {0}".format(a[:3], a[3:5], a[:5])
print(values, a, b, c, d, e)

3. Python functions

The general syntax to define a function in Python is:

def <name>(<arg_0>,...):
 <body>

For example:

def print_squared(x):
 print(x, "squared is", x * x)

print_squared(42)

A Function without arguments, all lines with same indentation form the body of the function:

def say_hello():
 print("hello")
 print("how do you do !")
 print("nice weather, eh ?")
print("hi")

''

42 squared is 1764

hi

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 16/48

as soon as indentation decreases the body of the function is completed.
no curly braces
no "end" or similar statements
this applies also for branches and loops

say_hello()

Good style:

1. use four spaces (or multiples) for indentation
2. no TABs (PyCharm automatatically replaces TAB by spaces !)

Return statement

def times_3(x):
 return 3 * x

print(times_3(7))

"Duck Typing"

No type declaration for the arguments. During execution of the function Python determines if
operations on arguments fit:

print(times_3("ab"))

A missing or plain return statement returns None:

def do_nothing(x):
 return

def print_x(x):
 print("x is", x)

print(do_nothing(0))

hello
how do you do !
nice weather, eh ?

21

ababab

None

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 17/48

print(print_x(1))

Python supports multiple return values:

def sum_and_diff(x, y):
 sum_ = x + y
 diff = x - y
 return sum_, diff

a, b = sum_and_diff(7, 3)
print("sum is", a)
print("diff is", b)

Python doc strings

def average_3(a, b, c):
 """this function computes the average of
 three given numbers
 """
 return (a + b + c) / 3.0

help(average_3)

A few words about execution order

def fun():
 print("i am fun")
 gun()

def gun():
 print("i am gun")

fun()

x is 1
None

sum is 10
diff is 4

Help on function average_3 in module __main__:

average_3(a, b, c)
 this function computes the average of
 three given numbers

i am fun
i am gun

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 18/48

Calling gun within fun works, to understand this we follow the order of execution:

1. Python interpreter starts to execute script at first line
2. then Python interpreter sees declaration of fun and stores function name and start of end of

function body.
3. then Python interpreter sees declaration of gun and stores function name and start of end of

function body.
4. then Python interpreter sees call of fun, because of step 1 the interpreter knows where the

body of fun starts and thus starts to execute the corresponding code lines.
5. After the print("i am fun") Python interpreter sees call of gun and again: because of step

2 the interpreter knows where the body of gun starts and thus starts to execute the
corresponding code lines.

Default arguments (when defining a function)

You can declare functions with different number of arguments:

def greet(name, formula="hi", ending="?"):
 print(formula, name, "how do you do", ending)

this uses the default value "hi" for the second argument:
greet("uwe")

and this overruns the first default argument:
greet("urs", "gruezi")

and this one overungs all:
greet("buddy", "yo", "\o/")

Naming arguments (when calling a function)

You can name parameters with = when calling a function, so you do not have to remember the order
and your code is better readable as you need not to look up the meaning of parameters:

greet("urs", ending="???", formula="gruezi wohl")

Another example:

declare function with default arguments as seen above:
def exchange_chf_to_eur(money, bank_discount=0.02, rate=1.2):
 return money * rate * (1.0 - bank_discount)

print(exchange_chf_to_eur(100.0, rate=1.05))

hi uwe how do you do ?
gruezi urs how do you do ?
yo buddy how do you do \o/

gruezi wohl urs how do you do ???

102.89999999999999

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 19/48

print(exchange_chf_to_eur(rate=1.05, money=200.0, bank_discount=0.01))

Exercise Session 3
1. Repeat the examples above, starting at "Multiple return values"
2. Write a function which takes the diameter of a circle and returns its area and circumference
3. Write a function which takes 1 up to 3 values and computes their product:

product(2) returns 2
product(2, 3) returns 6
product(2, 3, 4) returns 24

Optional exercises (higher order functions):
We can pass functions as function arguments too, so try to understand what the following functions do:

def avg_at_1_2(f):
 return (f(1) + f(2)) / 2.0

print(avg_at_1_2(math.sqrt))

def compose(f, g):
 def f_after_g(x):
 return f(g(x))
 return f_after_g

f = compose(math.exp, math.log)
print(f(3))

f = compose(math.sqrt, math.asin)
print(f(1.0))

4. If / elif / else

Logical values

Python has a type bool which can take two values True and False:

207.9

1.2071067811865475

3.0000000000000004
1.2533141373155001

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 20/48

ok = True
print(ok, type(ok))

Comparisons:

Logical values result from comparing numbers:

notation meaning

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

a == b a is is equal to b

a != b a is not equal to b

Comment:

= aka variable assignment is a statement ("it does something")
== aka test for equality is an expression (it can be evaluated to compute a value)

Logical computations:

Logical values can be combined

notation meaning

a and b True if a and b are True

a or b True if a or b are True

not a True if a is False else False

print(3 > 4 or 4 > 3)

print(3 < 7 and 7 < 12)

if / elif /else

True <class 'bool'>

True

True

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 21/48

Python uses if, elif and else keywords for branching code execution.
No else if!
The level of indentation defines the blocks, no "end" statement or braces !
after if follow zero to n elifs and then zero ore one else.

def test_if_even(x):
 if x % 2 == 0:
 print(x, "is even")
 else:
 print(x, "is odd")

test_if_even(12)

indentations can be nested:

def some_tests(x):
 if x > 0:
 if x % 2 == 0:
 print(x, "is positive and even")
 else:
 print(x, "is positive and odd")
 elif x == 0:
 print (x, "is zero")
 else:
 print (x, "is negative")

Code blocks:

Rule:

A code block ends if the level of indentation becomes less than the indent
ation of the first line of the block. Or if the program ends.

Recommended:

Use multiples of 4 spaces for indentation

some_tests(4)

some_tests(-1)

12 is even

4 is positive and even

-1 is negative

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 22/48

Exercise block 4
1. Repeat the examples above
2. Write a function which takes one value and doubles this if the value is even, else return the

value unchanged. So the function returns 4 for input 2 and 3 for input 3.
3. Write a function which takes a value and tests if it is a multiple of three and if it is a multiple of

four. The function prints an appropriate message for all four cases.
4. In the early days of Python some users disliked indentation and requested to implement curly

brace in Python to mark code block (like in Cish languages and R). Run from __future__
import braces and you can see the answer of the Python core developers.

Optional exercises

1. Try to forecast and understand the output of the following snippet:

def return_true():
 print("this is return_true function")
 return True

def return_false():
 print("this is return_false function")
 return False

this is "short circuit evaluation", see https://en.wikipedia.org/wiki/Short-ci
rcuit_evaluation
print(return_true() or return_false())
print()
print(return_false() or return_true())
print()
print(return_true() and return_false())
print()
print(return_false() and return_true())

See https://en.wikipedia.org/wiki/Short-circuit_evaluation (https://en.wikipedia.org/wiki/Short-
circuit_evaluation)

1. "Recursion" aka "a function calls itself": Try to understand what the following function
computes:

this is return_true function
True

this is return_false function
this is return_true function
True

this is return_true function
this is return_false function
False

this is return_false function
False

https://en.wikipedia.org/wiki/Short-circuit_evaluation

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 23/48

def compute(n):
 if n <= 1:
 return 1
 return n * compute(n - 1)

Can you implement a function which computes the sum of the first n numbers using recursion ?

5. Python loops

Python has while:

if the condition after while is False from the beginning, skip the associated code block
else execute the code block and "jump back" to while.
check again
etc

i = 11
while i % 5 != 0:
 print(i)
 i = 2 * i +1

and continue and break:

continue skips the end of the while code block and "jumps back" to while immediately
break stops looping and program execution contiues after the while block

x = 9
while x > 0:
 x = x - 1
 if x % 2 == 0:
 continue # skips rest of body of while
 print(x)
 if x % 3 == 0:
 break # quit body of while

print("done")

No do until (or similar). Use while True: + break instead.

11
23
47

7
5
3
done

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 24/48

while True:
 symbol = input("give me one letter: ")
 if len(symbol) == 1:
 break
 print("this was not one symbol, try again !")

Python lists

Python has some container types for collecting values. list is one such a type:

li = [1, 2, 4, 8]
print(li)

length of a list:

print(len(li))

print(type(li))

The empty list is []:

print(type([]))
print(len([]))

List of strings:

li = ["hi", "ho"]

Mixed types:

give me one letter: 123
this was not one symbol, try again !
give me one letter:
this was not one symbol, try again !
give me one letter: 3

[1, 2, 4, 8]

4

<class 'list'>

<class 'list'>
0

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 25/48

li = [1, 2.0, True, "hi"]
print(li)

More about lists below.

for loops

for has the general form

for <variable> in <iterable>:
 <codeblock>

An example for such an iterable are lists:

for name in ["urs", "uwe", "guido"]:
 print("I say hi to", name)

print("I also say hi to everybody I forgot")

Here name is a variable which you can name as you like.

In the first iteration name is urs, in the second iteration name is uwe, in the third iteration name is
guido. Then the list is exhausted and iteration stops.

Here we iterate over a list of numbers to sum them up:

def sumup(numbers):
 sum_ = 0.0
 for number in numbers:
 sum_ = sum_ + number
 return sum_

print(sumup([1, 2, 3]))

For counting loops use the range function which returns an iterable:

[1, 2.0, True, 'hi']

I say hi to urs
I say hi to uwe
I say hi to guido
I also say hi to everybody I forgot

6.0

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 26/48

for i in range(4):
 print(i, "squared is", i * i)

Now with different starting value:

for i in range(1, 4):
 print(i, "squared is", i * i)

And with a step size:

for i in range(1, 4, 2):
 print(i, "squared is", i * i)

Antipattern (C style)

This is correct code, and correlates to the way you iterate in languages as C:

numbers = [1, 3, 5]
for i in range(len(numbers)):
 print(numbers[i])

The more "python" and thus more readable version is:

for number in numbers:
 print(number)

The range function returns an iterable:

0 squared is 0
1 squared is 1
2 squared is 4
3 squared is 9

1 squared is 1
2 squared is 4
3 squared is 9

1 squared is 1
3 squared is 9

1
3
5

1
3
5

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 27/48

print(range(1, 4))

To see what an iterable produces (and thus how it behaves when used in a for loop), you can pass it to
the list funtion which converts an iterable to the list of the values the iterable produces:

print(list(range(1, 4)))

Comment: Python also has some INFINITE iterators, so be prepared !

Exercise block 5

1. Repeat examples above
2. Write a function which takes a list of numbers and computes their average (extend the example

for summing up numbers)
3. Modify this function so that it computes the average of all even numbers in the list. You also

have to count the even numbers for this.
4. What happes if you loop with for over a string ? What is the result if you pass a string to
list().

5. Can you write shorter expressions for range(0, 3) and range(1, 4, 1) ?

1. import random, lookup function random.randint.
2. Programm "number guessing game":

Computer generates random secret number in range 0 .. 100
User guesses number until secret number is found
After every guess the computer tells if guess is too low or too high. Hint: create a
random number, then use a while True loop and break if the users guess is correct.

3. Write a function which tests if a given number is prime.

6. More about Python container types

Lists
Python lists collect data, types may be mixed and the list may be as long as your computers memory
allows.

Some usefull, but not all list methods:

range(1, 4)

[1, 2, 3]

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 28/48

numbers = [1, 2, 3]
numbers.append(0)

print(numbers)

Comment: string methods do not change the corresponding string inplace but return a result. append
returns None but changes the list in place:

numbers = [1, 2, 3]
numbers_new = numbers.append(0)

print("numbers_new is", numbers_new)
print("numbers is", numbers)

print(len([1, 2, 4]))

print(numbers)
numbers.sort()
print(numbers)

To find the position of an element:

print(numbers.index(2))

print(numbers.index(4))

Element access, similar to strings:

[1, 2, 3, 0]

numbers_new is None
numbers is [1, 2, 3, 0]

3

[1, 2, 3, 0]
[0, 1, 2, 3]

2

ValueError Traceback (most recent ca
ll last)
<ipython-input-109-d2c585bc2403> in <module>()
----> 1 print(numbers.index(4))

ValueError: 4 is not in list

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 29/48

print(li)
print(li[0], li[-1])

List slicing, similar to strings:

print(li[1:-1])

In contrast to Python strings, which are immutable ("const"), you can use index access as well as slicing
for manipulation of a list

li[1] = 37
print(li)

Deletion of parts of a list works like this:

del li[1:3]
print(li)

Tuples

"immutable" lists. Use round instead of square brackets:

mixed types allowed too
slicing works

a = (1, 3, 5)
print(a)
print(type(a))

Rules of thumb:

Use lists for collecting data of same type
Use tuples for grouping data of different type

For example like this:

[1, 2.0, True, 'hi']
1 hi

[2.0, True]

[1, 37, True, 'hi']

[1, 'hi']

(1, 3, 5)
<class 'tuple'>

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 30/48

person_1 = ("jesus", 2015) # name + age
person_2 = ("watson", 87)

persons = [person_1, person_2]

Slicing / index access again:

tp = (1, 2, (1, 2), "")
print(tp[1:-1])

Empty tuple is (), for one element tuples use (x,) notation:

print((1,)) # prints tuple with one element
print((1)) # prints integer number 1

Member ship test

The keyword in tests for membership:

print(2 in [0, 1, 2, 3])

print(2 in (0, 1, 2, 3))

For strings in tests for substrings:

print("ab" in "asdfabc")

Negation

print(not (2 in (1, 2, 3)))

simpler:

(2, (1, 2))

(1,)
1

True

True

True

False

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 31/48

print(2 not in (1, 2, 3))

Exercises block 6

repeat the examples from above
write a function which takes a list of numbers and returns a new list which contains the squares
of the odd numbers from the input list.

Optional exercise
Look up the definition of the fibionacci number sequence
write a function which takes an integer number n and computes a list of the first n fibionacci
numbers (hint: start with [1, 1] and extend the list).
What is the output of the following program:

def f(x, a=[]):
 a.append(x)
 return len(a)

f(0)
f(1)

You might use additional print statements to inspect what's going on here.

7 Dictionaries

Dictionaries, aka "hash tables" or "look up tables" allow presentation of two column tables. The map a
key to a value.

For example:

first name (key) family name (value)

monty python

curt cobain

first_to_family_name = { 'monty': 'python',
 'curt' : 'cobain',
 }

print(first_to_family_name)

False

{'monty': 'python', 'curt': 'cobain'}

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 32/48

You see above that printing the dictionary has a different order than in its definition. Dictionaries are
only for representing a mapping from values in the left column of the table to their counterpart in the
right column. Ordering is not respected.

To lookup up a value use brackets:

print(first_to_family_name["monty"])

You can insert new values or overwrite existing values like this:

first_to_family_name["uwe"] = "schmitt"
print(first_to_family_name)

Size of a dictionary:

print(len(first_to_family_name))

Left column of table are "keys":

print(first_to_family_name.keys())

Right column are "values":

print(first_to_family_name.values())

Comment: .keys() and .values() return iterators which look like a list and partially behave like a
list. So you can use for to iterate over keys and values, but you can not append to them.

The empty dictionary is {}:

d = {}
print(d)
print(len(d))

python

{'monty': 'python', 'curt': 'cobain', 'uwe': 'schmitt'}

3

dict_keys(['monty', 'curt', 'uwe'])

dict_values(['python', 'cobain', 'schmitt'])

{}
0

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 33/48

Restrictions

values of dictionaries may have arbitrary type
keys must be immutable (so: on lists, but tuples, int, float, str, bool, ...)

Lookup of non existing keys:

print(first_to_family_name["jesus"])

in order to test if a value appears as an key of a dictionary use in: only checks keys, not values !

print("jesus" in first_to_family_name)

print(first_to_family_name.get("monty"))
print(first_to_family_name.get("jesus"))

Dictionaries may have different types for keys and values:

what_a_mess = { 3 : 9,
 5 : {25: 125},
 1.2 : (1, 2),
 "four": [4]
 }
print(what_a_mess)

print(what_a_mess[5])
print(what_a_mess[5][25])

KeyError Traceback (most recent ca
ll last)
<ipython-input-131-1f6c4e093fdb> in <module>()
----> 1 print(first_to_family_name["jesus"])

KeyError: 'jesus'

False

python
None

{1.2: (1, 2), 3: 9, 5: {25: 125}, 'four': [4]}

{25: 125}
125

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 34/48

A few comments on dictionaries:

writing and reading from a dictionary is extremly fast, also for huge dictionaries.
dictionaries are very helpful in many places
the Python interpreter internally is built around dictionaries

This is an example usage how to use a dictionary to create a histogram of numbers when the actual
numbers are not known from the begining:

def histogram(elements):
 histogram = {}
 for element in elements:
 if element not in histogram.keys():
 histogram[element] = 1
 else:
 histogram[element] += 1
 return histogram

print(histogram([1, 2, 1, 3]))

Exercises block 7

repeat the examples above
create a dictionary which maps numbers 1 to 100 to their squares

Optional exercises

Use the debugger of PyCharm, maybe introduce temporary variables, Pythons help system to
understand the following functions:

def do_something(z):
 cc = {}
 for x in z.split():
 cc[x] = cc.get(x, 0) + 1
 return cc

print(do_something("love love me doo"))

{1: 2, 2: 1, 3: 1}

{'love': 2, 'doo': 1, 'me': 1}

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 35/48

def something_other(z):
 c = []
 for w in z.split(","):
 if len(w) % 2 == 0:
 c.append(w)
 c.sort()
 return "-".join(c)

print(something_other("hi,what is,this,good,for"))

Write a function which inverts a dictionary. So it maps values to keys of a given dictionary. This
works only if the values are unique.
Now assume the values are not unique and write a function which creates a dictionary mapping
values to a list of keys from the given dictionary. Eg for input {1: 2, 2: 2, 3: 4} the
function returns {2: [1, 2], 4: [3]}.

Not covered here: sets
The basic function of a set is to answer "is a given value contained in a given set ?".

This allows answering questions like

what is the intersection of two sets ?
what is the union of two sets ?
what is the set difference between two sets ?
etc

Properties:

Elements in a set have no order
one element can only occur once
membership lookup is very fast

sets: http://www.learnpython.org/en/Sets (http://www.learnpython.org/en/Sets)

8. File I/O

Open a text file (the traditional way) for writing

The following example creates a text file holding two lines hi\n and ho\n:

fh = open("say_hi.txt", "w")
print("hi", file=fh)
print("ho", file=fh)

always close a file because data may be in buffer:
fh.close()

good-hi-this

http://www.learnpython.org/en/Sets

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 36/48

open(path, mode) returns an file object (file handle) which we use for manipulating the given
file.
mode maybe "r", "w", "a" (or some other types...) for "reading", "writing" and "appending".
the file=fp named parameter when calling print redirects the output to the file.
fp.close closes the file.

#show output of say_hi.txt

This "traditional way" is dangerous if you forget to close the file or if an error resumes programm
execution before the close method is called !

Background: most OS do not write immediatly to disk if you call write but collect data until an internal
memory region (buffer) is filled. So you never now exactly what is still in the buffer and what is on disk.
Only after closing or calling fp.flush() you can be sure that your data is on disk.

Open a file (modern way) using with:

Since Python 2.5 the with statement is supported. This statement executes the following body in a
secure way, so that the file is always closed, even in case of an error inside the body.

with open("say_hi.txt", "w") as fh:
 print("hi", file=fh)
 print("ho", file=fh)

#show output of say_hi.txt

Reading from a text file

For text files there are two ways to read: readlines returns the file line by line in a list of strings:

with open("say_hi.txt", "r") as fh:
 print(fh.readlines())

Comment: there is also a method called readline (no s at the end !) which only reads one line. So take
care the use the right method name.

What is nice in Python is that you can loop over the lines in a file using for:

hi
ho

hi
ho

['hi\n', 'ho\n']

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 37/48

with open("say_hi.txt", "r") as fh:
 for line in fh:
 print(line)

Why those empty lines ? We still can access the latest value of line:

print(repr(line))

So line also contains the line break \n from the file. And as print automatically starts a new line
when done, we get the empty extra lines.

To get rid of the \n:

with open("say_hi.txt", "r") as fh:
 for line in fh:
 line = line.rstrip()
 print(line)

Performance tip: use the for loop for iterating over a file. For huge files this only reads as much bytes
as needed in every iteration and thus works for files which are larger than your computers memory !

Again: if you are not sure what an iterator produces you may use list (unless the iterator is infinite):

with open("say_hi.txt", "r") as fh:
 print(list(fh))

Working with multiple files at the same time:

with open("say_hi.txt", "r") as fh_in:
 with open("say_hi_upper.txt", "w") as fh_out:
 for line in fh_in:
 print(line.rstrip().upper(), file=fh_out)

with open("say_hi.txt", "r") as fh_in, open("say_hi_upper.txt", "w") as fh_out:
 for line in fh_in:
 print(line.rstrip().upper(), file=fh_out)

hi

ho

'ho\n'

hi
ho

['hi\n', 'ho\n']

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 38/48

To break a long code line we can use \ at the end of a line:

with open("say_hi.txt", "r") as fh_in,\
 open("say_hi_upper.txt", "w") as fh_out:
 for line in fh_in:
 print(line.rstrip().upper(), file=fh_out)

#show output of say_hi_upper.txt

Reading and writing csv files

This is not covered in this course, but look at https://pymotw.com/3/csv/index.html
(https://pymotw.com/3/csv/index.html) ! If you work with csv files, do not implement your own reader
and writer, use the csv module, there are some corner cases which are tricky (for example you have a
cell which contains a "," or linebreak "\n"), and there are some variations (dialects).

Another option is to install pandas, a library for handling so called "data frames". pandas can read and
write from / to multiple sources, like csv and xlsx files, but also tables from relational databases.

Reading and writing binary files

For binary files the modes for opening are "rb", "wb" and "ab" (reading, writing and appending).

In addition to the methods we introduced above the file handle has methods read and write for
interaction. These are mostly used for binary files and not for text files.

Serialisation

Serialisation writes (even nested) data structures in a binary format to a disk. You can recover this data
later on easily. In Python serialisation is called "pickling" like conserving vegatables in a jar.

this is a complex data structure:
data = (1, { 1: 2, 3: [1, 2, 3], "s": (1, 2)})
print(data)

import pickle
with open("data.bin", "wb") as fp: # open in "write binary" mode
 pickle.dump(data, fp)

this is how it looks like on disk:
#show output of data.bin

HI
HO

(1, {1: 2, 3: [1, 2, 3], 's': (1, 2)})

�K}q(KKK]q(KKKeXsqKK�qu�q.

https://pymotw.com/3/csv/index.html

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 39/48

now recover your complex data structure:
with open("data.bin", "rb") as fp:
 recovered = pickle.load(fp)
print(recovered)
print(recovered == data)

Exercise block 8
1. Repeat the examples above
2. Write a script which writes square numbers 1, 4, 9, ..., 100 line by line to a text file,

check the content with your file system explorer then write some code to read the numbers
again and compute their product.

Optional exercises

1. Lookup how to use the csv module and use it to write a 10 x 10 multiplication table to a csv file
2. Use the same module to read the data from the file again and compute the sum of all entries.

9. Classes

This section assumes that you already had an introduction to object oriented programming in some
programming language and will show how classes work in Python.

A class in Python is declared with the class statement, methods are defined with def like functions.

Remember: a class is a "recipe" or "template" for the creation of objects. Or the other way round: a
object is an instance of a class.

(1, {1: 2, 3: [1, 2, 3], 's': (1, 2)})
True

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 40/48

import math

class Vector2D:

 def __init__(self, x0, y0):
 self.x = x0 # set attribute x
 self.y = y0 # set attribute y

 def length(self):
 """method which computes length of Vector2D"""
 return math.hypot(self.x, self.y)

create an instance, this creates the object and
calls __init__ with args 1 and -1:
p = Vector2D(1, -1)

now we can access attributes
print(p.x, p.y)

and call method
print(p.length())

class Vector2D provides the name of your class.
__init__ it the initializer method which is called if you instantiate Vector2D(1, -1). It sets
the attributes x and y.
There is no type declaration for attributes, you just set them inside __init__.
There are no rules for "private" or "protected" attributes and methods. A user of a class can
access every attribute and method.
But: it is common practice to use names starting with a single _ for private attributes and
methods.
self is the current instance of the object. (In C++ / Java we have this instead).
In Python you must use self as the first parameter when you declare methods, but you do not
provide it if you call the method.

Some internals

Methods are attached to the class, so for examle you can access

print(Vector2D.__init__)
print(Vector2D.length)

If you call p.length() Python looks up the class of p which is Vector2D and translates this to
Vector2D.length(p), so self is set to p if you call Vector2D.length and so the computation
works on attributes of p.

1 -1
1.4142135623730951

<function Vector2D.__init__ at 0x10f0d8e18>
<function Vector2D.length at 0x10f0d8bf8>

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 41/48

Special methods

There are many other special methods having names starting and ending with __ like __init__. For
example __str__ is called whenever you convert a object to a string representation. This is the case
when you print the object:

import math

class Point2D:

 def __init__(self, x0, y0):
 self.x = x0
 self.y = y0

 def length(self):
 return math.hypot(self.x, self.y)

 def __str__(self):
 return "Point2D(x=%s, y=%s, lenght=%s)" % (self.x, self.y, self.length
()) # attribute and method access here !

p = Point2D(1, -1)

this calls the __str__ method:
print(p)

There are many other special functions for customizing your objects, see
https://docs.python.org/2/reference/datamodel.html#special-method-names
(https://docs.python.org/2/reference/datamodel.html#special-method-names)

Inheritance

We want to create a class Vector2D which reuses and overwrites methods from Point2D, but also
adds addition for vectors by implementing the special method __add__:

Point2D(x=1, y=-1, lenght=1.4142135623730951)

https://docs.python.org/2/reference/datamodel.html#special-method-names

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 42/48

class Vector2D(Point2D):

 def __str__(self):
 """ overrides __str__ from Vector2D """
 return "Vector2D(x=%s, y=%s)" % (self.x, self.y)

 def __add__(self, other):
 """ is called when you execute self + other """
 return Vector2D(self.x + other.x, self.y + other.y)

create instance
v1 = Vector2D(1.0, 2.0)

access attributes
print(v1.x, v1.y)

calls __str__:
print(v1)

calls method in base class !
print(v1.length())

this is in base class too, see result:
print(v1 + v1)

Exercise block 9
1. Repeat the examples above.
2. Extend Vector2D to implement a method scale which takes a float x and scales the

attributes x and y internally.
3. Implement a method __mul__ which takes another vector and returns the dot product (scalar

product) of both. __mul__ is called if you use v1 * v2.
4. Create a class ComplexNumber which inherits Vector2D and reimplements __mul__ for

complex arithmethic. Reimplement __str__ to achieve output in the style of 1 + 2i.

10. tuple unpacking, enumerate, list comprehensions

Tuple unpacking allows taking values from a tuple without index access, so you need less code and it is
often more readable. Instead of writing

tp = (1, 2, 3)
a = tp[0]
b = tp[1]
c = tp[2]
print(a + b + c)

1.0 2.0
Vector2D(x=1.0, y=2.0)
2.23606797749979
Vector2D(x=2.0, y=4.0)

6

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 43/48

... you can write:

a, b, c = tp
print(a + b + c)

You can ommit parantheses for declaring a tuple:

a, b, c = 1, 2, 3
print(a + b + c)

So: multiple return values of function is nothing else than returning tuples followed
by tuple unpacking.

Good style: use __ for not needed values if you do tuple unpacking. So if you only want to unpack a use
the following style to avoid declaration of variables you will not use later on:

tp = (1, 2, 3)
a, __, __ = tp

Tuple unpacking is handy for exchanging values, you need no temporary variables:

print(a, b)
a, b = b, a
print(a, b)

If this was to fast, here is a more detailed implementation:

print(a, b)
tp = (b, a) # creates tuple
a, b = tp # unpacks the values and overwrites variables "a" and "b" with new
values !
print(a, b)

Using zip

To iterate over two (or more) lists at the same time use zip + tuple unpacking after for:

6

6

1 2
2 1

2 1
1 2

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 44/48

numbers = [1, 2, 4, 8]
words = ["one", "two", "four", "eight"]

for number, word in zip(numbers, words):
 print(number, word)

zip also returns an iterator which gives you a tuple in every iteration. Tuple unpacking with for now
does tuple unpacking for evey tuple created by the zip iterator.

print(list(zip(numbers, words)))

If the iterables passed to zip have different lengths, the shortest one determines the result:

print(list(zip("abcde", "012", "XY")))

Iterating using enumerate

If you want to iterate over a list and you want to count at the same time enumerate is handy:

for i, word in enumerate(words):
 print(i, word)

zip and enumerate work on other iterables (a file handles) as well:

with open("say_hi.txt", "r") as fh:
 for i, line in enumerate(fh):
 print("line", i, "is: ", line.rstrip())

List comprehensions

1 one
2 two
4 four
8 eight

[(1, 'one'), (2, 'two'), (4, 'four'), (8, 'eight')]

[('a', '0', 'X'), ('b', '1', 'Y')]

0 one
1 two
2 four
3 eight

line 0 is: hi
line 1 is: ho

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 45/48

List comprehensions allow creation and transformation of lists in a comprehensive and readable way.
For example the following two lines ...

squares = [i * i for i in range(6)]
print(squares)

... are equivalent to

squares = []
for i in range(6):
 squares.append(i * i)
print(squares)

But you can filter too:

squares_of_odds = [i * i for i in range(6) if i % 2 == 1]
print(squares_of_odds)

squares_of_odds = []
for i in range(6):
 if i % 2 == 1:
 squares_of_odds.append(i * i)
print(squares_of_odds)

We used range only for demonstration, you take any other iterable instead:

words = ["hi", "this", "is", "list", "comprehension"]
print([w.upper() for w in words if len(w) % 2 == 0])

sorting: decorate - sort - undecorate pattern

If you want to sort a list of strings not by their alphabetic order but by their length you can provide a
key parameter which is a function which indictes the ordering:

names = ["python", "programming", "I", "like"]
print(sorted(names))

[0, 1, 4, 9, 16, 25]

[0, 1, 4, 9, 16, 25]

[1, 9, 25]

[1, 9, 25]

['HI', 'THIS', 'IS', 'LIST']

['I', 'like', 'programming', 'python']

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 46/48

print(sorted(names, key=len))

Before introducing this key parameter in Python 2.4 people used the following strategy which I
demonstrate for educational purposes:

decorate:
decorated_names = [(len(s), s) for s in names]
print("decorated names: ", decorated_names)

tuples are sorted lexicographically:
the first element defines the ordering

decorated_names.sort()
print("sorted decorated names:", decorated_names)

undecorate
names = [name for (__, name) in decorated_names]
print("names sorted by length:", names)

Exercises

Transform the list [2, 3, 5, 7, 11] to a new list such that the result contains the doubled
value of elements from list being smaller than 7.
Can you use the decorate-sort-undecorate pattern to sort a list of strings without considering
their case. ?

11. try / except / finally

x = 1 / 0

Catch exceptions:

['I', 'like', 'python', 'programming']

decorated names: [(6, 'python'), (11, 'programming'), (1, 'I'),
(4, 'like')]
sorted decorated names: [(1, 'I'), (4, 'like'), (6, 'python'), (11,
'programming')]
names sorted by length: ['I', 'like', 'python', 'programming']

ZeroDivisionError Traceback (most recent ca
ll last)
<ipython-input-179-f9f847a0a080> in <module>()
----> 1 x = 1 / 0

ZeroDivisionError: division by zero

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 47/48

def divide(a, b):
 return a / b

try:
 x = divide(3, 2)
 y = divide(7, 0)
except ZeroDivisionError:
 print("oops")

You can raise your own exceptions:

def fun(number):
 if number < 0.0:
 raise Exception("{} is negative! ".format(number))
 return number

print(fun(1.0))

read the output below line by line !!!
print(fun(-1.0))

def is_float(string):
 try:
 float(string)
 return True
 except ValueError:
 return False

print(is_float("1.2"))
print(is_float("1.ab"))

oops

1.0

Exception Traceback (most recent ca
ll last)
<ipython-input-183-c513a8d426e1> in <module>()
 1 # read the output below line by line !!!
----> 2 print(fun(-1.0))

<ipython-input-181-98fe1eee559e> in fun(number)
 1 def fun(number):
 2 if number < 0.0:
----> 3 raise Exception("{} is negative! ".format(number))
 4 return number

Exception: -1.0 is negative!

True
False

26/09/2018 script

https://siscourses.ethz.ch/python_one_day/script.html 48/48

see https://docs.python.org/3/tutorial/errors.html
(https://docs.python.org/3/tutorial/errors.html)

Some topics not covered in the course

https://www.digitalocean.com/community/tutorials/how-to-use-args-and-kwargs-in-python-3
(https://www.digitalocean.com/community/tutorials/how-to-use-args-and-kwargs-in-python-3)

http://www.python-course.eu/python3_lambda.php (http://www.python-
course.eu/python3_lambda.php)

slicing with stepsize: http://www.pythoncentral.io/how-to-slice-listsarrays-and-tuples-in-python/
(http://www.pythoncentral.io/how-to-slice-listsarrays-and-tuples-in-python/)

generators and yield statement: https://realpython.com/blog/python/introduction-to-python-
generators/ (https://realpython.com/blog/python/introduction-to-python-generators/)

Other resources ¶
https://siscourses.ethz.ch/python_one_day/reference.html
(https://siscourses.ethz.ch/python_one_day/reference.html)

Within ETH network (or via VPN) you can use http://proquest.safaribooksonline.com/
(http://proquest.safaribooksonline.com/) to access book like:

http://shop.oreilly.com/product/0636920028338.do
(http://shop.oreilly.com/product/0636920028338.do)
http://shop.oreilly.com/product/0636920028154.do
(http://shop.oreilly.com/product/0636920028154.do)
ADVANCED: http://shop.oreilly.com/product/0636920032519.do
(http://shop.oreilly.com/product/0636920032519.do)

/Users/uweschmitt/Projects/python-course-one-day/lib/python3.5/site
-packages/ipykernel_launcher.py:9: UserWarning: get_ipython_dir has
moved to the IPython.paths module since IPython 4.0.
 if __name__ == '__main__':

https://docs.python.org/3/tutorial/errors.html
https://www.digitalocean.com/community/tutorials/how-to-use-args-and-kwargs-in-python-3
http://www.python-course.eu/python3_lambda.php
http://www.pythoncentral.io/how-to-slice-listsarrays-and-tuples-in-python/
https://realpython.com/blog/python/introduction-to-python-generators/
https://siscourses.ethz.ch/python_one_day/reference.html
http://proquest.safaribooksonline.com/
http://shop.oreilly.com/product/0636920028338.do
http://shop.oreilly.com/product/0636920028154.do
http://shop.oreilly.com/product/0636920032519.do

