
Unit Testing
Manuel Weberndorfer

Manuel Weberndorfer October 22, 2018 1



Introduction

Manuel Weberndorfer October 22, 2018 2



Test Taxonomy

Tests have different scope.

• Unit Testing
• Integration Testing
• . . .

Manuel Weberndorfer October 22, 2018 3



Test Taxonomy II

Tests have different goals.

• Acceptance Testing
• Regression Testing
• . . .

Manuel Weberndorfer October 22, 2018 4



Unit Testing

• Testing by developers for developers
• Code that tests code
• Automatic checks of what you know about code

Manuel Weberndorfer October 22, 2018 5



Example Code

solvers.py:

def solve_linear_equation(k, d):
"""Solves k * x + d = 0 for x."""
return -d / k

Manuel Weberndorfer October 22, 2018 6



Example Test

test_solve_linear_equation.py:

from solvers import solve_linear_equation

def test_solves_general_linear_equation():
"""Checks solution for k = 2 and d = 5."""
assert solve_linear_equation(k=2, d=5) == -2.5

Manuel Weberndorfer October 22, 2018 7



Run the Test

No output, everything OK (Python 3).

>>> import test_solve_linear_equation
>>> test_solve_linear_equation.test_(...)_equation()
>>>

Manuel Weberndorfer October 22, 2018 8



Run the Test Again

Not OK (Python 2.7).

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "test_solve_linear_equation.py", line 5, (...)

assert solve_linear_equation(k=2, d=5) == -2.5
AssertionError

Manuel Weberndorfer October 22, 2018 9



Lesson Learned

Software development is complex.

• Requirements change

– Code used differently
– Used code changes

• Rechecking manually not feasible

Manuel Weberndorfer October 22, 2018 10



Beyoncé Rule

If you liked it then you should have put a test on it.

Manuel Weberndorfer October 22, 2018 11



How to Unit Test

Manuel Weberndorfer October 22, 2018 12



xUnit Frameworks

• Nicer output
• More checks

– Float comparison
– Expected exceptions
– . . .

Manuel Weberndorfer October 22, 2018 13



Test Runners

• Find tests (based on pattern)
• Execute them
• Create a report (e.g. in XML)

Manuel Weberndorfer October 22, 2018 14



Remember Solver

solvers.py:

def solve_linear_equation(k, d):
"""Solves k * x + d = 0 for x."""
return -d / k

Manuel Weberndorfer October 22, 2018 15



TestCase

test_solve_linear_equation.py:

from unittest import TestCase
from solvers import solve_linear_equation

class SolversTest(TestCase):

def test_solves_general_linear_equation(self):
"""Checks solution for k = 2 and d = 5."""
result = solve_linear_equation(k=2, d=5)
self.assertEqual(result, -2.5)

Manuel Weberndorfer October 22, 2018 16



Run Tests

Start runner: python -m unittest discover

=================================================
FAIL: test_solves_general_linear_equation (...)
Checks solution for k = 2 and d = 5.
-------------------------------------------------
Traceback (most recent call last):

File "(...)", line 8, in test_(...)_equation
self.assertEqual(result, -2.5)

AssertionError: -3 != -2.5
-------------------------------------------------
Ran 1 test in 0.000s

Manuel Weberndorfer October 22, 2018 17



Fix Tests

Adapt for floating point numbers.

def test_solves_general_linear_equation(self):
"""Checks solution for k = 2 and d = 5."""
result = solve_linear_equation(k=2., d=5.)
self.assertAlmostEqual(result, -2.5)

Manuel Weberndorfer October 22, 2018 18



Check Result

Restart runner: python -m unittest discover

.
-----------------------------------------------
Ran 1 test in 0.000s

OK

Manuel Weberndorfer October 22, 2018 19



Special Cases

Add test to TestCase.

def test_throws_for_gradient_zero(self):
"""Solve throws exception for gradient zero."""
with self.assertRaises(ZeroDivisionError):

solve_linear_equation(k=0, d=5)

Manuel Weberndorfer October 22, 2018 20



Check Result

Restart runner: python -m unittest discover

..
-----------------------------------------------
Ran 2 tests in 0.000s

OK

Manuel Weberndorfer October 22, 2018 21



Next Steps

• Fix behaviour for integers
• What happens when k=0 and d=0?
• . . .

Manuel Weberndorfer October 22, 2018 22



Result
Verified Documentation.

class SolversTest(TestCase):

def test_solves_general_linear_equation(self):
(...)
result = solve_linear_equation(k = 2., d = 5.)
(...)

def test_throws_for_gradient_zero(self):
(...)

def test_throws_for_gradient_and_offset_zero(self):
(...)

Manuel Weberndorfer October 22, 2018 23



Know the Framework

Use suitable assertions.

• assertEqual instead of assertTrue(a == b)
• assertAlmostEquals for floats
• many more. . . (see documentation)

Manuel Weberndorfer October 22, 2018 24



Best Practices

Manuel Weberndorfer October 22, 2018 25



Good Tests

Write your tests first.

• F ast
• I solated
• R epeatable
• S elf-validating
• T imely

Manuel Weberndorfer October 22, 2018 26



Fast

Prepare for 1000s of tests.

• Maximum: few milliseconds
• You should run all the tests often
• You will write many of them

Manuel Weberndorfer October 22, 2018 27



Isolated

Minimal maintenance.

• Independent of each other
• Independent of behaviour tested elsewhere
• Independent of machine
• Independent of external data/network

Manuel Weberndorfer October 22, 2018 28



Repeatable

Rerun to locate bugs.

• Same result every time you run it
• No random input
• Independent of environment (network, etc.)

Manuel Weberndorfer October 22, 2018 29



Self-Validating

Do the work once.

• Test determines if result was expected
• No manual work involved
• Remember, you want to run them often

Manuel Weberndorfer October 22, 2018 30



Timely

Write the test as soon as possible.

• You still know why you wrote the code that way
• You know the special cases
• You have (manual) test cases ready

Manuel Weberndorfer October 22, 2018 31



Pattern

Given-When-Then Pattern.

• Given: Setup of environment

• When: Execute what you want to test

• Then: Check result

• (if required): Cleanup

Manuel Weberndorfer October 22, 2018 32



Recall Test

test_solve_linear_equation.py:

class SolversTest(TestCase):

def test_solves_general_linear_equation(self):
"""Checks solution for k = 2 and d = 5."""
result = solve_linear_equation(k=2., d=5.) # WHEN
self.assertAlmostEqual(result, -2.5) # THEN

Manuel Weberndorfer October 22, 2018 33



Help the Reader

That’s why I chose 5. and 2..

def test_solves_general_linear_equation(self):
"""Checks solution for nonzero gradient, offset."""
nonzero_gradient = 2.
nonzero_offset = 5.

result = solve_linear_equation(nonzero_gradient,
nonzero_offset)

self.assertAlmostEqual(result, -2.5)

Manuel Weberndorfer October 22, 2018 34



Repeat

We could do the same thing here.

def test_throws_for_gradient_zero(self):
"""Solve throws exception for gradient zero."""
with self.assertRaises(ZeroDivisionError):

solve_linear_equation(k=0, d=5)

Manuel Weberndorfer October 22, 2018 35



Fixtures

We use a nontrivial test fixture.

class SolversTest(TestCase):

def setUp(self):
self.nonzero_gradient = 2.
self.nonzero_offset = 5.

def test_solves_general_linear_equation(self):
(...)

Manuel Weberndorfer October 22, 2018 36



Rollout

No need to copy and paste.

def test_throws_for_gradient_zero(self):
"""Solve throws exception for gradient zero."""
with self.assertRaises(ZeroDivisionError):

solve_linear_equation(k=0, d=self.nonzero_offset)

Manuel Weberndorfer October 22, 2018 37



Set the Stage

Use Fixtures.

• Provide data for the tests
• Initialize classes with nontrivial constructors
• Provide convenience methods
• Name a collection of tests

Manuel Weberndorfer October 22, 2018 38



Real-World Testing

Manuel Weberndorfer October 22, 2018 39



Challenges

You will be facing common challenges.

• I can’t test hidden/private code.
• I can’t test every combination of inputs.
• I don’t understand what a function does.
• The function has 20 parameters, so 2ˆ20 tests?
• The function needs to read a file.

Manuel Weberndorfer October 22, 2018 40



Private Code

I can’t test hidden/private code.

No problem, everybody else can’t, either.

• Test what users can do with your code
• Extract code if this makes testing difficult

Manuel Weberndorfer October 22, 2018 41



Lean Testing

I can’t test every combination of inputs.

Test until you are confident that your code works.

• Test the uses cases the unit was designed for
• Test ‘boundaries’ and special cases
• Add tests when you discover bugs
• ‘Code coverage’ tools can help

Manuel Weberndorfer October 22, 2018 42



No Documentation

I don’t understand what a function does.

No problem, use unit testing.

• Write a test that checks any assumption
• Look at the actual output
• Fix the test
• Repeat

Manuel Weberndorfer October 22, 2018 43



Complex Interface

The function has 20 parameters.

Unit testing tests atomic units.

• Add regression tests first
• Try to extract atomic units and test them

– 20 one-boolean-parameter-functions: 40 tests
– One 20-boolean-parameter-function: ~1M tests

• Add integration tests for the (important) use cases

Manuel Weberndorfer October 22, 2018 44



Interoperation

The function needs to read a file.

def bad_function():
with open("data.txt", "r") as file:

x = file.read()
return x + x

No problem, there are tools for that: ‘Mocking’

Manuel Weberndorfer October 22, 2018 45



Mocking

Choose a return value yourself (Python 3).

from unittest import TestCase, mock
from bad_function import bad_function

class MockTest(TestCase):

def test_returns_read_string_twice(self):
"""bad_function returns read string twice."""
with mock.patch('builtins.open',

mock.mock_open(read_data='abc')):
self.assertEqual(bad_function(), 'abcabc')

Manuel Weberndorfer October 22, 2018 46



Other languages

Unit Testing is not language-specific.

• Principles apply to software engineering in general
• Unit testing frameworks (e.g.)

– Python: unittest
– R: test_that
– C++: googletest
– Java: JUnit

Manuel Weberndorfer October 22, 2018 47



Conclusion

Manuel Weberndorfer October 22, 2018 48



Benefits

Correctness and more.

• Check new code for bugs
• Check old code for new bugs after modifications
• Documentation
• Tested/able code is often good code

– Small units (simpler, reuseable)
– Special cases covered
– Easy to improve later

Manuel Weberndorfer October 22, 2018 49



Questions?

Acknowledgements

• This talk is based on a talk by Uwe Schmitt.

Manuel Weberndorfer October 22, 2018 50


	Introduction
	How to Unit Test
	Best Practices
	Real-World Testing
	Conclusion

