ETHzurich = | T Services

Towards reproducibility in data analysis
and programming

About me

Dr. Uwe Schmitt

Work for Scientific IT Services (SIS)

Scientific programmer

| also work as tutor and consultant.

2/ 81

Our Goal: always
produce same results
from same data

Our Goal: always
produce same results
from same data

At any time

Our Goal: always
produce same results
from same data

At any time
At any place

Our Goal: always
produce same results
from same data

At any time
At any place

By any person

What can go wrong?

1. Software / tools are not available (anymore).

7 /81

What can go wrong?

1. Software / tools are not available (anymore).

2. Used software is fragile.

8 /81

What can go wrong?

1. Software / tools are not available (anymore).
2. Used software is fragile.

3. Processing steps are not documented.

9 /81

What can go wrong?

1. Software / tools are not available (anymore).
2. Used software is fragile.
3. Processing steps are not documented.

4. Human mistakes during processing.

10/ 81

1. Not available software / tools

o Use open source software / programming languages.

e Publish your code using an open source license.

11/ 81

2. Software is fragile

o Google for "excel hell™

12 / 81

Insights

THE NINE
CIRCLES OF
EXCEL HELL

= i R BE o +

2. Software is fragile

e Excel: incorrect leap year calculations 1900-02-29

e 7 Worst Excel Mistakes of All Time

5. Harvard Professors Publish Wrong Result in Paper

Two Harvard professors incorrectly concluded that economic growth slows
significantly if the debt of the country exceeds 90% of the country’s Gross Domestic
Product (GDP). However, it was later discovered by none other than a student that

the average formula used didn’t cover the complete range of values in the column.

14 / 81

https://www.linkedin.com/pulse/7-worst-excel-mistakes-all-time-nate-coughran-cpa

3. Processing steps are not
documented.

4. How to avoid human mistakes?

' .,.;PROTOCOLS' ‘

Recipes / lab protocols:

o List of simple steps
e More or less exact instructions

o Executed by humans

18 / 81

- — - - - a &
from == [3 288007 " _ss34e a2 - i T - s > » e -
= - 2 . TOW - v ’ 3 ’ e 3 o B -
efs 2 » "% o raaBIOE =) " - . Ben : -
oly-<© g3e—94 6.3 s py > 2 b SRR
P 278]93 3 . 3 T S— . ¥ : -
: co18e~9- ? . 12194 e s * W . D
1 5664 04 » - a2)6 - > » .
s '3273063‘7* . 6 .8394 = 1 Ge p - - .
» '-3'1,8039]51(—‘ 03 » & . 915448 . Y o - a =0 . .
2 _4'J9612?36‘-’ 03 » _ .14964617 - - g fw 8
5.8 g1le—04 » y 45034008€ 4. DAaT3
8 43028 = r : a
> 0 1527629€-05 » T L 232068
4. P o
2 2e—03 »
3904392
= 1 order g Pp——— -* - . oege - eedlS
order poLy o o L g e > . —— o * &
1 val2ad(X, WW, 1 > ToLE . - -
def poly 1learn.preprocess oe=Or T
from skle ialFeatur es (degr
poly = Polynom’ f
- ol -fit—tra“..
Xt poly XT. ww)
zz = np.dOt(]
turn zZ
e s -e

obj_win_el, obj_win_e2,
obj_win_ea = np.abs(obj _w

if check_zero:
from stats -<impor
log_snr = np.log
X1l = (obj_win_*f
X2 = (log_snr-me

- : ; 1-‘
x3 (ob;! _v_nn_ea—m--.-\u ob] _win ea St iy
select_finite = P.i1sfinite(=2 [N ; o -—
x1[~se1ec :) () g N -
elses t“f'1l"l'lte]. x2 [selocy ':.,.-..__ - - e - »® .
o . - 23 - - - * -
- .concatenatg(- -
QEJ_.Ca'l._ﬂfwhm gy (:[* 2 NP Newas s a3
o d yva b - -
Obﬁ_ca}_he] = Ob) win l“(x . (s]| » R — . - . - - »
~Cal_e2 = . *lepar;: = 1 L T . - -
obj_‘cal‘-xi Ob)_qu e2apa e Y ‘O o 3 e » -
°bj_cal wor °bj_cay . e-Slope e
- -—’“‘[“Sel Yy . ()h) ¢
_ ect r‘,,‘t‘_; ol =y =
Sturn obj_cal Tt B)can i — v
def aqq —%X, oby cal B —lews o, S S ..
. ¥
“@Uibrateg .. Yr» OB cn N 7—

-
..“.-.

Programs

numbers = read_txt("numbers.txt")
average = sum(numbers) / len(numbers)
print("average is", average)

average 1is 12.34

20/ 81

Programs

numbers = read_txt("numbers.txt")
average = sum(numbers) / len(numbers)
print("average is", average)

average 1is 12.34

o List of simple steps
e Exact instructions

o Executed by unforgiving computers

21/ 81

Why to program?

Reduce / no manual steps in your analysis

Automate as much as possible

Good code is implicit documentation how you produced
results

Others can build upon your work

22 | 81

' w
Programmlng‘can be fun

' B ‘

8

EFFECTS OF COMPUTER PROGRAMMING ON
COGNITIVE OUTCOMES: A META-ANALYSIS

YUEN-KUANG CLIFF LIAO
University of Houston

GEORGE W. BRIGHT
University of North Carolina at Greensboro

ABSTRACT

Although claims regarding the cognitive benefits of computer programming
have been made, results from existing empirical studies are conflicting. To
make a more reliable conclusion on this issue, a meta-analysis was performed
to synthesize existing research concerning the effects of computer program-
ming on cognitive outcomes. Sixty-five studies were located from three
sources, and their quantitative data were transformed into a common scale—
Effect Size. The analysis showed that 58 or 89 percent of the study-weighted
effect sizes were positive and favored the computer programming group over
the control groups. The overall grand mean of the study-weighted effect size
for all 432 comparisons was 0.41; this suggests that students having computer
programming experiences scored about sixteen percentile points higher on
various cognitive-ability tests than students who did not have programming
experiences. In addition, four of the seven coded variables selected for this
study (i.c., type of publication, grade level, language studied, and duration of
treatment) had a statistically significant impact on the mean study-weighted
effect sizes. The findings suggest that the outcomes of learning a computer
language go beyond the content of that specific computer language. The
results also suggest to teachers a mildly effective approach for teaching
cognitive skills in a classroom setting.

... the findings suggest that the outcomes of learning a com-
puter language go beyond the content of that specific computer
language.

N
AUTOMATE
THE BORING STUFF
WITH PYTHON

Eases talking to the IT people.

< LETS TALK ABOUT
NESTED WHILE LOOPS.

imgflip.com

27 | 81

How do I learn to program?

e Choose easy-to-learn and open source language like
Python or R.

28 / 81

How do I learn to program?

e Choose easy-to-learn and open source language like
Python or R.

e R preferable for advanced statistics and elaborate plotting.

29/ 81

How do I learn to program?

e Choose easy-to-learn and open source language like
Python or R.

e R preferable for advanced statistics and elaborate plotting.

o Python preferable for data science and machine learning.

30/ 81

How do I learn to program?

Choose easy-to-learn and open source language like
Python or R.

R preferable for advanced statistics and elaborate plotting.

Python preferable for data science and machine learning.

| consider Python as the clearer and more versatile
programming language.

31/ 81

How do I learn to program?

Choose easy-to-learn and open source language like
Python or R.

R preferable for advanced statistics and elaborate plotting.

Python preferable for data science and machine learning.

| consider Python as the clearer and more versatile
programming language.

There are many books and online courses!

32/ 81

confidence

Typical learning curve

first real project
(aka "the valley of despair’)

\

gaining experience

initial learning

time

Now | know
programming, what
can go wrong?

Now | know
programming, what
can go wrong?

Actually a lot!

What can go wrong?

1. Programs change over time.

36/ 81

What can go wrong?

1. Programs change over time.

2. Programs can break.

37 /81

What can go wrong?

1. Programs change over time.
2. Programs can break.

3. Code can be complex.

38 /81

What can go wrong?

1. Programs change over time.
2. Programs can break.
3. Code can be complex.

4. Programs will run on other computers.

39/ 81

1. Managing changes

Time

[(mo) (=) [=

Version control systems (VCS)

e time machines for your source code and textual data.

e git is the most common tool for tracking changes over
time.

e git # github!

e github, gitlab: web frontends for managing git
repositories.

e ETH has its own instance gitlab.ethz. ch for hosting
code.

42 | 81

git benefits

No version numbers in file names any more!

No comments to keep old and outdated code.

Undo changes.

Supports collaborative development.

43 / 81

Version your software

e Learn to write "packages" instead of emailing code.

e Use semantic versioning x.Vy . Z.
o X for major updates (python2 and python3)

o y for new features which don't crash existing results.

o z is incremented for bug fixes.

o "freeze" dependencies: document versions of external code.

44 | 81

2. Programs can be incorrect

Why?

e You make mistakes during development.
o Software complexity grows during development.

o Others use your software not as intended.

47 | 81

Techniques

e Defensive programming.

def average(data):
assert len(data) > ©

48 / 81

Techniques

e Defensive programming.

def average(data):
assert len(data) > ©

o Automated code tests: unit tests vs. regression tests.

def test_average():
assert average([1
assert average([1,
assert average([1,

e A collection of unit tests is a test suite.

49 / 81

3. Code can complex.

.‘--\"lln\'";\f- "

'\ -I\\\.\

Clean code ("you read code more
often than you write it")

e Choose good names for variables and functions.

e Write many functions.

o DRY (don't repeat yourself): Avoid duplications.

o Write generic code: e.g. don't hard code file names.

e Document your program incl. the underlying concepts.
e unit tests enforce better code structure.

e Read about "clean code”".

52/ 81

Other best practices

KISS: Keep it simple and stupid: Keep your solutions as
simple as possible.

YAGN: You ain't gonna need it: Don't overdesign your
programs.

In the face of ambiguity, refuse the temptation to guess:
o Don't try to fix invalid input.
o Complain instead!

Understand your programs vs programming by coincidence.

Be brave to trash your code and start again.

53 / 81

4. Programs will run in different
environments

Problem:

Your program depends on other
software

Like: Python 3.6 or libraries

How to check if my code works
on different computers?

o Cl tests = continuous integration tests

e Automates installation on pristine computer and running
tests.

e Can be integrated in github.com, gitlab.com or
gitlab.ethz.ch.

56 / 81

Cl Pipelinein gitlab.

Pipeline #2114 triggered 3 days ago by ¢:) Uwe Schmitt
release 0.3.2

©® 4 jobs formaster in 2 minutes and 25 seconds (queued for 1 second)

S atest
o bc220e26 = @

Pipeline Jobs 4

Style Test_code Test_and_create_docs Publish_docs

©) style Q (©) tests Q () docs Q () publish_docs 4

57 /81

Virtual environments

Virtual environments try to isolate programs and their
dependencies from the rest of the computer.

e Python has the concept of so called "virtual environments".

$ python3 -m venv ...

o Anaconda supports so called "conda environments" for
Python and R.

58 / 81

Sledge hammers for complex
scenarios

3 _H.i | HT_

Concepts

|ldea: bundle your software and all dependencies

Virtual Machine (VM): bundle contains full operating system

Container: does not bundle operating system

docker: one way to manage and run containers.

61/ 81

What you ship -

Extra software to
install on Host "

Virtual machine(s)

Container(s)

Your software

external libraries,
development tools,
interpreters

Guest OS:
Linux, Mac OS, Windows

Your software

external libraries,
development tools,
interpreters

Hypervisor Container runtime
(Virtual Box, ...) (docker,)
Host OS: Host OS:

Linux, Mac OS, Windows

Linux (

What you

~ want to ship

!lReaI!!
computer

62/ 81

Comparison VM vs Container

Advantages

Disadvantages

Virtual Machine

Easy to setup

10s of GB at least to ship
startup time: minutes
reduced performance

Container

lightweight
startup time: milliseconds
native performance

Some learning involved,
Linux guest only

63/ 81

All problems solved?

Darling, |
solved all problems!

Did you test
on another CPU?

Computer arithmetic is not exact!

>>> from math import sin, pi

>>> sin(pi)
1.2246467991473532e-16

>>> 0.1 + 0.2 + 0.3
0.6000000000000001

>>> (0.1 + 0.2) + 0.3 == 0.1 + (0.2 + 0.3)
False

« 0.2, = 0.0011 0011 8011 0011.. .,

e Numbers have to be truncated (usually 52 digits for 64 bit
floats) as memory is limited.

e This is not a problem for reproducibility!

66 / 81

e Such behaviour for + ,*, - and / is standardized by IEEE
Standard for Floating-Point Arithmetic (IEEE 754).

e But exp and other analytical functions not!

| ran this on two computers with different CPUs

>>> "%.14e" % math.exp(-math.sin(431))
1.76144146064997e+00

>>> "%.14e" % math.exp(-math.sin(431))
1.76144146064998e+00

e This is very rare and its actual effect (error propagation)
requires mathematical analysis.

o Cl testing can help to detect such issues!

67 /81

Randomized algorithms

E.g used in machine learning (cross valiadation, batch
learning).

e Most random numbers are pseudo random numbers.

o Starting with a given "seed" the computer will always create
the same random number sequence.

e Freeze the seed when archiving / publishing your code. Also
when unit testing.

>>> import random

>>> random.seed(42)
>>> random.random()
0.6394267984578837

68 / 81

But this is so much to
learn

But this is so much to
learn

Learn incrementally

But this costs so much
time

But this costs so much
time

Think about actual costs and risks.

How can | continue
after this
presentation?

How can | continue
after this
presentation?

Don't hesitate to contact us
https://sis.id.ethz.ch

SIB Course best practices in
programming.

https://sis.id.ethz.ch/

Summary

Summary

Learn programming!

Summary

Learn programming!

Use git!

Summary

Learn programming!
Use git!

Write robust and clean codel!

Summary

Learn programming!
Use git!
Write robust and clean codel

Implement automated code tests!

Summary

Learn programming!
Use git!
Write robust and clean code!
Implement automated code tests!

Use VM or containers!

Thanks for your
attention!

